找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Curves; Towards Moduli Space Maxim E. Kazaryan,Sergei K. Lando,Victor V.‘Prasol Textbook 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
樓主: deduce
11#
發(fā)表于 2025-3-23 13:15:05 | 只看該作者
Curves in Projective Spaces,nsional space there is much more freedom. However, to define curves in . and higher dimensional projective spaces is more difficult than in the plane. In this chapter, we discuss methods of defining such curves.
12#
發(fā)表于 2025-3-23 16:01:34 | 只看該作者
Differential 1-Forms on Curves,ean primarily spaces of meromorphic functions, vector fields, and differential forms. These spaces are endowed with natural algebraic structures, which allows one to express properties of curves in algebraic terms.
13#
發(fā)表于 2025-3-23 21:00:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:16:54 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:28 | 只看該作者
Exam Problems,hematics of the Higher School of Economics in 2010–2014. Most of these problems were given as exercises in the main text, and we have collected them here for the reader’s convenience. Along with problems, we also give a list of exam questions.
16#
發(fā)表于 2025-3-24 06:41:22 | 只看該作者
https://doi.org/10.1007/978-3-030-98132-7Algebraic curves are curves given by polynomial equations in projective spaces. On the other hand, algebraic curves are one-dimensional complex manifolds, and to define them, there is no need to embed them anywhere. We will consider various ways to define curves and discuss how one can decide whether they result in the same curve.
17#
發(fā)表于 2025-3-24 10:55:56 | 只看該作者
https://doi.org/10.1007/978-3-642-25544-1The Riemann–Roch theorem establishes a relationship between two numbers: the dimension .(.) of the vector space .(.) of meromorphic functions with divisor ≥?. and the dimension .(.) of the space ..(.) of meromorphic 1-forms with divisor ≥?..
18#
發(fā)表于 2025-3-24 16:15:56 | 只看該作者
Decision Making in Complex Systems,In the first section of this chapter, we give a proof of the Riemann–Roch formula .(.)???.(.???.)?=?.???.?+?1. In the second section, we present a geometric interpretation of the quantities occurring in the Riemann–Roch formula in terms of canonical curves.
19#
發(fā)表于 2025-3-24 20:30:42 | 只看該作者
20#
發(fā)表于 2025-3-25 00:59:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石台县| 柯坪县| 酒泉市| 郓城县| 鹰潭市| 鲁甸县| 南丰县| 绥宁县| 增城市| 江门市| 牡丹江市| 长春市| 八宿县| 沐川县| 洞口县| 莱西市| 包头市| 凯里市| 绩溪县| 平远县| 德阳市| 古浪县| 佛坪县| 育儿| 长岛县| 晋州市| 银川市| 新昌县| 定日县| 阿拉善右旗| 延庆县| 民县| 平安县| 新宾| 宁城县| 宁乡县| 南乐县| 临沭县| 郎溪县| 读书| 凤庆县|