找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Algebraic Combinatorics; Walks, Trees, Tablea Richard P. Stanley Textbook 2018Latest edition Springer International Publishing AG, part of

[復(fù)制鏈接]
樓主: 字里行間
41#
發(fā)表于 2025-3-28 18:18:27 | 只看該作者
Cubes and the Radon Transform,Let us now consider a more interesting example of a graph ., one whose eigenvalues have come up in a variety of applications. Let . denote the cyclic group of order 2, with elements 0 and 1 and group operation being addition modulo 2.
42#
發(fā)表于 2025-3-28 22:36:02 | 只看該作者
43#
發(fā)表于 2025-3-29 00:39:33 | 只看該作者
A Glimpse of Young Tableaux,We defined in Chapter . Young’s lattice .?, the poset of all partitions of all nonnegative integers, ordered by containment of their Young diagrams.
44#
發(fā)表于 2025-3-29 03:19:13 | 只看該作者
The Matrix-Tree Theorem,The Matrix-Tree Theorem is a formula for the number of spanning trees of a graph in terms of the determinant of a certain matrix. We begin with the necessary graph-theoretical background. Let . be a finite graph, allowing multiple edges but not loops. (Loops could be allowed, but they turn out to be completely irrelevant.)
45#
發(fā)表于 2025-3-29 07:58:33 | 只看該作者
A Glimpse of Combinatorial Commutative Algebra,In this chapter we will discuss a profound connection between commutative rings and some combinatorial properties of simplicial complexes. The deepest and most interesting results in this area require a background in algebraic topology and homological algebra beyond the scope of this book.
46#
發(fā)表于 2025-3-29 14:38:32 | 只看該作者
Richard P. StanleyIncludes a new chapter on combinatorial commutative algebra.First text on algebraic combinatorics targeted towards undergraduates.Written by the most well-known algebraic combinatorist world-wide.Cove
47#
發(fā)表于 2025-3-29 16:15:08 | 只看該作者
48#
發(fā)表于 2025-3-29 23:30:46 | 只看該作者
Algebraic Combinatorics978-3-319-77173-1Series ISSN 0172-6056 Series E-ISSN 2197-5604
49#
發(fā)表于 2025-3-30 00:54:21 | 只看該作者
,Epigenetic Therapy for Alzheimer’s Disease,d elements, such as {1, 1, 3, 4, 4, 4, 6, 6}. We are only concerned with how many times each element occurs and not on any ordering of the elements. Thus for instance {2, 1, 2, 4, 1, 2} and {1, 1, 2, 2, 2, 4} are the same multiset: they each contain two 1’s, three 2’s, and one 4 (and no other elements).
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘德县| 上林县| 彰化市| 治多县| 汾西县| 乡城县| 桃江县| 白城市| 吉木乃县| 奇台县| 大田县| 阿荣旗| 万山特区| 攀枝花市| 卓尼县| 南丰县| 化州市| 德惠市| 阳信县| 普兰县| 浮山县| 呼图壁县| 延吉市| 六枝特区| 江城| 东光县| 江都市| 内黄县| 新巴尔虎右旗| 湟源县| 铜鼓县| 南城县| 鄂托克旗| 博兴县| 七台河市| 文昌市| 田阳县| 枣庄市| 五寨县| 彰化县| 临桂县|