找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Coding Theory Over Finite Commutative Rings; Steven T. Dougherty Book 2017 The Author(s) 2017 algebraic coding theory.frobenius

[復(fù)制鏈接]
樓主: Daguerreotype
11#
發(fā)表于 2025-3-23 11:59:48 | 只看該作者
Lyndon Benke,Michael Papasimeon,Tim MillerIn this chapter, we study polycyclic, negacyclic, constacyclic, quasicyclic and skew cyclic codes which are all generalizations of the important family of cyclic codes. We describe their algebraic setting and show how to use this setting to classify these families of codes.
12#
發(fā)表于 2025-3-23 17:44:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:19:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:08:06 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:55 | 只看該作者
https://doi.org/10.1007/978-3-319-59806-2algebraic coding theory; frobenius rings; MacWilliams relations; codes over rings; codes over finite rin
16#
發(fā)表于 2025-3-24 10:35:46 | 只看該作者
Ring Theory,robenius rings and characterize them in terms of characters. We prove the generalized Chinese Remainder Theorem and describe what constitutes a minimal generating set for a code over a finite Frobenius ring.
17#
發(fā)表于 2025-3-24 12:22:46 | 只看該作者
MacWilliams Relations,ults of algebraic coding theory. We describe them first for codes over groups and extend this to codes over Frobenius rings. Finally, we give a practical guide for producing MacWilliams relations for a specific ring.
18#
發(fā)表于 2025-3-24 16:25:06 | 只看該作者
19#
發(fā)表于 2025-3-24 20:53:24 | 只看該作者
Fabio Fossa,Luca Paparusso,Francesco Braghinrobenius rings and characterize them in terms of characters. We prove the generalized Chinese Remainder Theorem and describe what constitutes a minimal generating set for a code over a finite Frobenius ring.
20#
發(fā)表于 2025-3-25 01:01:28 | 只看該作者
Shrey Verma,Simon Parkinson,Saad Khanults of algebraic coding theory. We describe them first for codes over groups and extend this to codes over Frobenius rings. Finally, we give a practical guide for producing MacWilliams relations for a specific ring.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝昌县| 邮箱| 英超| 棋牌| 临桂县| 南汇区| 松潘县| 宁夏| 辽源市| 阳谷县| 电白县| 宜兴市| 托克逊县| 茌平县| 平度市| 怀化市| 临沂市| 石台县| 辽中县| 寿宁县| 灵丘县| 榆中县| 武陟县| 碌曲县| 黄梅县| 马公市| 信宜市| 扶余县| 南乐县| 江城| 呼伦贝尔市| 汉寿县| 天祝| 靖州| 江源县| 诸暨市| 东海县| 栖霞市| 商河县| 密山市| 沁阳市|