找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Coding Theory Over Finite Commutative Rings; Steven T. Dougherty Book 2017 The Author(s) 2017 algebraic coding theory.frobenius

[復(fù)制鏈接]
樓主: Daguerreotype
11#
發(fā)表于 2025-3-23 11:59:48 | 只看該作者
Lyndon Benke,Michael Papasimeon,Tim MillerIn this chapter, we study polycyclic, negacyclic, constacyclic, quasicyclic and skew cyclic codes which are all generalizations of the important family of cyclic codes. We describe their algebraic setting and show how to use this setting to classify these families of codes.
12#
發(fā)表于 2025-3-23 17:44:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:19:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:08:06 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:55 | 只看該作者
https://doi.org/10.1007/978-3-319-59806-2algebraic coding theory; frobenius rings; MacWilliams relations; codes over rings; codes over finite rin
16#
發(fā)表于 2025-3-24 10:35:46 | 只看該作者
Ring Theory,robenius rings and characterize them in terms of characters. We prove the generalized Chinese Remainder Theorem and describe what constitutes a minimal generating set for a code over a finite Frobenius ring.
17#
發(fā)表于 2025-3-24 12:22:46 | 只看該作者
MacWilliams Relations,ults of algebraic coding theory. We describe them first for codes over groups and extend this to codes over Frobenius rings. Finally, we give a practical guide for producing MacWilliams relations for a specific ring.
18#
發(fā)表于 2025-3-24 16:25:06 | 只看該作者
19#
發(fā)表于 2025-3-24 20:53:24 | 只看該作者
Fabio Fossa,Luca Paparusso,Francesco Braghinrobenius rings and characterize them in terms of characters. We prove the generalized Chinese Remainder Theorem and describe what constitutes a minimal generating set for a code over a finite Frobenius ring.
20#
發(fā)表于 2025-3-25 01:01:28 | 只看該作者
Shrey Verma,Simon Parkinson,Saad Khanults of algebraic coding theory. We describe them first for codes over groups and extend this to codes over Frobenius rings. Finally, we give a practical guide for producing MacWilliams relations for a specific ring.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 山东| 德江县| 犍为县| 南昌县| 福安市| 六盘水市| 新巴尔虎右旗| 香港 | 丹凤县| 辽中县| 揭西县| 正宁县| 金沙县| 临泉县| 剑阁县| 增城市| 镶黄旗| 腾冲县| 株洲市| 曲松县| 阿克陶县| 新营市| 贵南县| 密山市| 焦作市| 永吉县| 神木县| 安多县| 巴塘县| 湖州市| 澄城县| 金湖县| 融水| 清远市| 宁都县| 龙山县| 育儿| 金寨县| 神农架林区| 九台市|