找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Approaches to Partial Differential Equations; Xiaoping Xu Book 2013 Springer-Verlag Berlin Heidelberg 2013 Algebraic method.Asym

[復(fù)制鏈接]
樓主: risky-drinking
11#
發(fā)表于 2025-3-23 11:58:45 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:53:43 | 只看該作者
Algebraic Approaches to Partial Differential Equations978-3-642-36874-5
14#
發(fā)表于 2025-3-23 22:53:28 | 只看該作者
Special Functionssigma function .(.) satisfies .′(.)/.(.)=.(.). We discuss these functions and their properties in this chapter to a certain depth. Finally, we present Jacobi’s elliptic functions ., and ., and we derive the nonlinear ordinary differential equations that they satisfy. These functions are also very us
15#
發(fā)表于 2025-3-24 05:49:10 | 只看該作者
16#
發(fā)表于 2025-3-24 08:24:01 | 只看該作者
Nonlinear Scalar Equationsary parameter functions of . for the equation of transonic gas flows. Similar solutions are also obtained for the short-wave equation and the Khokhlov–Zabolotskaya equation in nonlinear acoustics of bounded bundles. The symmetry transformations and two new families of exact solutions with multiple p
17#
發(fā)表于 2025-3-24 11:29:39 | 只看該作者
18#
發(fā)表于 2025-3-24 16:21:56 | 只看該作者
19#
發(fā)表于 2025-3-24 20:45:19 | 只看該作者
20#
發(fā)表于 2025-3-25 02:20:57 | 只看該作者
LCA Studies on Marine Alternative Fuelstum .-body systems in one dimension. If .=2, we find a connection between the Calogero–Sutherland model and the Gauss hypergeometric function. When .>2, we have a new class of multivariable hypergeometric functions. Finally, we use matrix differential operators and Fourier expansions to solve the Ma
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金山区| 临汾市| 同德县| 伊吾县| 长顺县| 井研县| 张家界市| 墨玉县| 陆丰市| 白城市| 永济市| 湛江市| 普安县| 秦安县| 沙雅县| 诸城市| 嘉荫县| 巩义市| 明水县| 宁南县| 濮阳市| 兰西县| 榆树市| 井研县| 阳西县| 河源市| 大关县| 岐山县| 沧源| 邢台市| 信宜市| 灵宝市| 嘉义县| 铅山县| 长阳| 平遥县| 澎湖县| 东源县| 泸西县| 吉安县| 璧山县|