找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Geometry, and Physics in the 21st Century; Kontsevich Festschri Denis Auroux,Ludmil Katzarkov,Yuri Tschinkel Book 2017 Springer In

[復(fù)制鏈接]
樓主: Heel-Spur
11#
發(fā)表于 2025-3-23 09:52:24 | 只看該作者
978-3-319-86738-0Springer International Publishing AG, part of Springer Nature 2017
12#
發(fā)表于 2025-3-23 17:23:54 | 只看該作者
Algebra, Geometry, and Physics in the 21st Century978-3-319-59939-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
13#
發(fā)表于 2025-3-23 18:13:24 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:53 | 只看該作者
Von der Hardware zur Anwendung,ntroduced by Buchsbaum and Eisenbud and later studied by Kempf, De Concini, Strickland and many other people. It is highly singular and can be seen as a proto-typical singular moduli space in algebraic geometry. We introduce a natural derived analog of Com(V) which is a smooth derived scheme RCom(V)
15#
發(fā)表于 2025-3-24 06:15:04 | 只看該作者
Von der Hardware zur Anwendung, TQFT can be formulated both in the continuum and on the lattice and generalizes Dijkgraaf–Witten theory by replacing a finite group by a finite 2-group. The basic field in this TQFT is a 2-connection on a principal 2-bundle. We classify topological actions for such theories as well as loop and surf
16#
發(fā)表于 2025-3-24 06:49:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:30 | 只看該作者
Von der Hardware zur Anwendung,egories to 2-dimensional ones. Also, we discuss the notion of motivic Donaldson–Thomas invariants (as defined by M. Kontsevich and Y. Soibelman) in the framework of 2-dimensional Calabi–Yau categories. In particular we propose a conjecture which allows one to define Kac polynomials for a 2-dimension
18#
發(fā)表于 2025-3-24 18:38:45 | 只看該作者
Von der Hardware zur Anwendung,We study co-associative fibrations of ..-manifolds. We propose that the adiabatic limit of this structure should be given locally by a maximal submanifold in a space of indefinite signature and set up global versions of the constructions.
19#
發(fā)表于 2025-3-24 21:44:02 | 只看該作者
https://doi.org/10.1007/978-3-540-30029-8We prove the non-commutative Hodge-to-de Rham Degeneration Conjecture of Kontsevich and Soibelman.
20#
發(fā)表于 2025-3-25 01:38:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永仁县| 伊春市| 原阳县| 定州市| 泸西县| 栾城县| 北碚区| 城口县| 昌乐县| 普兰店市| 玉溪市| 曲阜市| 平和县| 白沙| 景洪市| 兴化市| 河西区| 隆林| 凭祥市| 榆树市| 南宁市| 庆安县| 富川| 禹州市| 九龙城区| 商城县| 博湖县| 宁海县| 武功县| 肥东县| 宁陕县| 温州市| 商河县| 习水县| 新绛县| 五莲县| 吴川市| 高州市| 广水市| 灵宝市| 湖州市|