找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Geometry, and Physics in the 21st Century; Kontsevich Festschri Denis Auroux,Ludmil Katzarkov,Yuri Tschinkel Book 2017 Springer In

[復(fù)制鏈接]
樓主: Heel-Spur
11#
發(fā)表于 2025-3-23 09:52:24 | 只看該作者
978-3-319-86738-0Springer International Publishing AG, part of Springer Nature 2017
12#
發(fā)表于 2025-3-23 17:23:54 | 只看該作者
Algebra, Geometry, and Physics in the 21st Century978-3-319-59939-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
13#
發(fā)表于 2025-3-23 18:13:24 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:53 | 只看該作者
Von der Hardware zur Anwendung,ntroduced by Buchsbaum and Eisenbud and later studied by Kempf, De Concini, Strickland and many other people. It is highly singular and can be seen as a proto-typical singular moduli space in algebraic geometry. We introduce a natural derived analog of Com(V) which is a smooth derived scheme RCom(V)
15#
發(fā)表于 2025-3-24 06:15:04 | 只看該作者
Von der Hardware zur Anwendung, TQFT can be formulated both in the continuum and on the lattice and generalizes Dijkgraaf–Witten theory by replacing a finite group by a finite 2-group. The basic field in this TQFT is a 2-connection on a principal 2-bundle. We classify topological actions for such theories as well as loop and surf
16#
發(fā)表于 2025-3-24 06:49:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:30 | 只看該作者
Von der Hardware zur Anwendung,egories to 2-dimensional ones. Also, we discuss the notion of motivic Donaldson–Thomas invariants (as defined by M. Kontsevich and Y. Soibelman) in the framework of 2-dimensional Calabi–Yau categories. In particular we propose a conjecture which allows one to define Kac polynomials for a 2-dimension
18#
發(fā)表于 2025-3-24 18:38:45 | 只看該作者
Von der Hardware zur Anwendung,We study co-associative fibrations of ..-manifolds. We propose that the adiabatic limit of this structure should be given locally by a maximal submanifold in a space of indefinite signature and set up global versions of the constructions.
19#
發(fā)表于 2025-3-24 21:44:02 | 只看該作者
https://doi.org/10.1007/978-3-540-30029-8We prove the non-commutative Hodge-to-de Rham Degeneration Conjecture of Kontsevich and Soibelman.
20#
發(fā)表于 2025-3-25 01:38:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锡林浩特市| 沾化县| 习水县| 麻城市| 玛沁县| 新邵县| 仪征市| 盘山县| 阳城县| 团风县| 惠水县| 浦东新区| 黄浦区| 阜平县| 漠河县| 准格尔旗| 尖扎县| 大荔县| 嘉善县| 康保县| 金门县| 商河县| 涟水县| 朝阳市| 崇州市| 五台县| 新野县| 栾川县| 三江| 项城市| 稷山县| 长宁县| 保定市| 揭阳市| 皮山县| 乐昌市| 余庆县| 庆云县| 无棣县| 淮阳县| 额尔古纳市|