找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Geometry and Software Systems; Michael Joswig,Nobuki Takayama Conference proceedings 2003 Springer-Verlag Berlin Heidelberg 2003

[復(fù)制鏈接]
樓主: Inoculare
11#
發(fā)表于 2025-3-23 09:43:42 | 只看該作者
12#
發(fā)表于 2025-3-23 17:20:10 | 只看該作者
https://doi.org/10.1007/978-3-540-73339-3e boundary matrices which in general are sparse. We provide a review of several algorithms for the calculation of Smith Normal Form of sparse matrices and compare their running times for actual boundary matrices. Then we describe alternative approaches to the calculation of simplicial homology. The
13#
發(fā)表于 2025-3-23 21:26:34 | 只看該作者
14#
發(fā)表于 2025-3-23 23:35:41 | 只看該作者
X Window System (X11) und Arbeitsumgebungenaces, which are so beautiful from an abstract point of view. But these were static visualizations. Using the computer program .., which was written by the second author, one can now draw algebraic curves and surfaces depending on parameters interactively..Using this software and Coble‘s explicit equ
15#
發(fā)表于 2025-3-24 05:05:44 | 只看該作者
https://doi.org/10.1007/978-3-540-73339-3he surface contains singularities. Most algorithms for constructing a polygonization of the surface will miss the singular points. We present an algorithm for polygonizing such surfaces which attempts to get accurate representations of the singular points. A client-server approach, with a Java apple
16#
發(fā)表于 2025-3-24 06:50:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:06 | 只看該作者
Von der Hardware zur Anwendung, plane. It is done first in Maple by translating the geometric relations into polynomial equations, decomposing the obtained system of polynomials into irreducible representative triangular sets, and finding an adequate numerical solution from each triangular set. A Java class coding the solution an
18#
發(fā)表于 2025-3-24 14:51:12 | 只看該作者
19#
發(fā)表于 2025-3-24 19:06:49 | 只看該作者
20#
發(fā)表于 2025-3-25 00:31:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图们市| 虞城县| 子长县| 都昌县| 青浦区| 南昌县| 聂拉木县| 西城区| 泰和县| 宁阳县| 应城市| 井研县| 卢湾区| 秭归县| 高雄市| 永州市| 巨野县| 治县。| 绩溪县| 通辽市| 丁青县| 竹溪县| 多伦县| 东方市| 武川县| 平乐县| 亚东县| 鹤庆县| 定边县| 伊宁市| SHOW| 新干县| 临泉县| 湟源县| 普陀区| 新泰市| 南郑县| 比如县| 长白| 凤翔县| 珠海市|