找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Arithmetic and Geometry with Applications; Papers from Shreeram Chris Christensen,Avinash Sathaye,Chandrajit Bajaj Book 2004 Sprin

[復(fù)制鏈接]
樓主: MASS
21#
發(fā)表于 2025-3-25 05:19:19 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:58 | 只看該作者
Debating Business School LegitimacySymplectic groups are characterized by their subdegrees. Symplectic equations are recognized by symplectic forms. Odd dimensional orthogonal groups in characteristic two are recognized by modified vectorial derivatives. Orbitcounting lemma and its consequences are reviewed.
23#
發(fā)表于 2025-3-25 14:16:53 | 只看該作者
24#
發(fā)表于 2025-3-25 15:57:48 | 只看該作者
Debating Business School LegitimacyWe study the effect of the toric modifications, described e.g. in [13], on a certain class of complete intersection toric varieties. The construction is based on the notion of Newton polyhedron.
25#
發(fā)表于 2025-3-25 20:27:24 | 只看該作者
26#
發(fā)表于 2025-3-26 02:22:07 | 只看該作者
27#
發(fā)表于 2025-3-26 04:48:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:28:45 | 只看該作者
29#
發(fā)表于 2025-3-26 12:37:50 | 只看該作者
Thoughts on Symplectic Groups and Symplectic Equations,Symplectic groups are characterized by their subdegrees. Symplectic equations are recognized by symplectic forms. Odd dimensional orthogonal groups in characteristic two are recognized by modified vectorial derivatives. Orbitcounting lemma and its consequences are reviewed.
30#
發(fā)表于 2025-3-26 20:27:03 | 只看該作者
Bounding Singular Surfaces of General Type,We provide simpler proofs of several boundedness theorems, contained in in articles [2], [3], for log surfaces of general type with semi log canonical singularities. At the same time, we make these proofs effective, with explicit upper bounds.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林甸县| 宜良县| 河南省| 湛江市| 新乐市| 塔城市| 黄龙县| 开平市| 达孜县| 满洲里市| 滕州市| 个旧市| 江源县| 盐津县| 巨鹿县| 平泉县| 桃园市| 徐州市| 利津县| 武强县| 蕲春县| 红桥区| 卢龙县| 云和县| 砀山县| 松溪县| 同德县| 永泰县| 晋宁县| 抚顺市| 文昌市| 石景山区| 阿坝| 福建省| 天峻县| 杭锦后旗| 都昌县| 融水| 洞口县| 资兴市| 东港市|