找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra, Arithmetic and Geometry with Applications; Papers from Shreeram Chris Christensen,Avinash Sathaye,Chandrajit Bajaj Book 2004 Sprin

[復(fù)制鏈接]
樓主: MASS
21#
發(fā)表于 2025-3-25 05:19:19 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:58 | 只看該作者
Debating Business School LegitimacySymplectic groups are characterized by their subdegrees. Symplectic equations are recognized by symplectic forms. Odd dimensional orthogonal groups in characteristic two are recognized by modified vectorial derivatives. Orbitcounting lemma and its consequences are reviewed.
23#
發(fā)表于 2025-3-25 14:16:53 | 只看該作者
24#
發(fā)表于 2025-3-25 15:57:48 | 只看該作者
Debating Business School LegitimacyWe study the effect of the toric modifications, described e.g. in [13], on a certain class of complete intersection toric varieties. The construction is based on the notion of Newton polyhedron.
25#
發(fā)表于 2025-3-25 20:27:24 | 只看該作者
26#
發(fā)表于 2025-3-26 02:22:07 | 只看該作者
27#
發(fā)表于 2025-3-26 04:48:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:28:45 | 只看該作者
29#
發(fā)表于 2025-3-26 12:37:50 | 只看該作者
Thoughts on Symplectic Groups and Symplectic Equations,Symplectic groups are characterized by their subdegrees. Symplectic equations are recognized by symplectic forms. Odd dimensional orthogonal groups in characteristic two are recognized by modified vectorial derivatives. Orbitcounting lemma and its consequences are reviewed.
30#
發(fā)表于 2025-3-26 20:27:03 | 只看該作者
Bounding Singular Surfaces of General Type,We provide simpler proofs of several boundedness theorems, contained in in articles [2], [3], for log surfaces of general type with semi log canonical singularities. At the same time, we make these proofs effective, with explicit upper bounds.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐昌市| 梧州市| 梁平县| 辽中县| 安西县| 新化县| 乌兰县| 邢台县| 东明县| 丹棱县| 府谷县| 秦安县| 临沧市| 天水市| 井陉县| 苗栗县| 璧山县| 余江县| 峡江县| 宜良县| 平潭县| 绥滨县| 宜川县| 石首市| 阿鲁科尔沁旗| 冀州市| 宜宾市| 贵德县| 于都县| 绥宁县| 武功县| 承德县| 灵石县| 舒兰市| 文昌市| 汉寿县| 莲花县| 讷河市| 平湖市| 峡江县| 长阳|