找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra and Galois Theories; Régine Douady,Adrien Douady Textbook 2020 Springer Nature Switzerland AG 2020 Galois Theory.Coverings, fundam

[復(fù)制鏈接]
查看: 37989|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:31:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebra and Galois Theories
影響因子2023Régine Douady,Adrien Douady
視頻videohttp://file.papertrans.cn/153/152487/152487.mp4
發(fā)行地址This book aims to transfer geometric intuition to the algebraic framework of Galois theory.Gives a parallel presentation of Galois theory and the theory of covering spaces and highlights this similari
圖書(shū)封面Titlebook: Algebra and Galois Theories;  Régine Douady,Adrien Douady Textbook 2020 Springer Nature Switzerland AG 2020 Galois Theory.Coverings, fundam
影響因子.Galois theory has such close analogies with the theory of coverings that algebraists use a geometric language to speak of field extensions, while topologists speak of "Galois coverings". This book endeavors to develop these theories in a parallel way, starting with that of coverings, which better allows the reader to make images. The authors chose a plan that emphasizes this parallelism. The intention is to allow to transfer to the algebraic framework of Galois theory the geometric intuition that one can have in the context of coverings.. This book is aimed at graduate students and mathematicians curious about a non-exclusively algebraic view of Galois theory..
Pindex Textbook 2020
The information of publication is updating

書(shū)目名稱Algebra and Galois Theories影響因子(影響力)




書(shū)目名稱Algebra and Galois Theories影響因子(影響力)學(xué)科排名




書(shū)目名稱Algebra and Galois Theories網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Algebra and Galois Theories網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Algebra and Galois Theories被引頻次




書(shū)目名稱Algebra and Galois Theories被引頻次學(xué)科排名




書(shū)目名稱Algebra and Galois Theories年度引用




書(shū)目名稱Algebra and Galois Theories年度引用學(xué)科排名




書(shū)目名稱Algebra and Galois Theories讀者反饋




書(shū)目名稱Algebra and Galois Theories讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:27:24 | 只看該作者
,Dessins d’Enfants,nly embeds in the product of ., as . runs through the set of irreducible polynomials of ., but this set is itself not easy to understand if only because there is no natural way of numbering the roots of a polynomial.
地板
發(fā)表于 2025-3-22 06:55:32 | 只看該作者
5#
發(fā)表于 2025-3-22 09:42:47 | 只看該作者
Régine Douady,Adrien DouadyThis book aims to transfer geometric intuition to the algebraic framework of Galois theory.Gives a parallel presentation of Galois theory and the theory of covering spaces and highlights this similari
6#
發(fā)表于 2025-3-22 13:42:25 | 只看該作者
http://image.papertrans.cn/a/image/152487.jpg
7#
發(fā)表于 2025-3-22 18:32:55 | 只看該作者
8#
發(fā)表于 2025-3-23 00:32:18 | 只看該作者
https://doi.org/10.1007/978-3-030-45537-8 on .. If . is a compact connected Riemann surface over . (i.e. equipped with a non constant morphism .), then the field . is a finite extension of .. Moreover, there is a finite subset . of . such that . is a connected finite cover of .. The functors . and . give an equivalence between the category
9#
發(fā)表于 2025-3-23 04:02:33 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 17:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双柏县| 灵山县| 三明市| 科尔| 马龙县| 龙江县| 郎溪县| 宣城市| 扶风县| 布尔津县| 兴仁县| 福建省| 息烽县| 巴塘县| 莱西市| 双城市| 肥乡县| 三河市| 长武县| 安阳县| 吉隆县| 襄樊市| 昭平县| 洛川县| 平和县| 兴化市| 德令哈市| 桑植县| 汽车| 新泰市| 桃园市| 富平县| 剑阁县| 新疆| 隆化县| 新乡市| 富顺县| 彰化县| 镇沅| 漳平市| 弥勒县|