找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra IX; Finite Groups of Lie A. I. Kostrikin,I. R. Shafarevich Book 1996 Springer-Verlag Berlin Heidelberg 1996 Algebra.Brauer group.Br

[復(fù)制鏈接]
樓主: Filament
11#
發(fā)表于 2025-3-23 12:59:12 | 只看該作者
Finite-Dimensional Division Algebras,real quaternions, which rapidly led to diverse applications in physics and mechanics. However, further extension of our knowledge of finite-dimensional division algebras was delayed, and even acquired a somewhat dramatic character. Thus, after the origin and study of the real quaternions there follo
12#
發(fā)表于 2025-3-23 14:51:13 | 只看該作者
Book 1996basic information Carter describes the Deligne-Lusztig method of obtaining characters of these groups using l-adic cohomology and subsequent work of Lusztig..The second part by Platonov and Yanchevskii surveys the structure of finite-dimensional division algebras and includes an account of reduced K
13#
發(fā)表于 2025-3-23 19:44:23 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:19 | 只看該作者
15#
發(fā)表于 2025-3-24 06:11:01 | 只看該作者
Finite-Dimensional Division Algebras,wed a long period (until the beginning of the present century), during which no other finite-dimensional division algebras were discovered. We only remark that in 1880 Frobenius proved that over the field of real numbers there exists no non-commutative division algebra apart from Hamilton’s quaternions.
16#
發(fā)表于 2025-3-24 08:11:18 | 只看該作者
17#
發(fā)表于 2025-3-24 10:59:24 | 只看該作者
5樓
18#
發(fā)表于 2025-3-24 17:49:31 | 只看該作者
6樓
19#
發(fā)表于 2025-3-24 21:28:43 | 只看該作者
6樓
20#
發(fā)表于 2025-3-25 02:17:57 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
精河县| 时尚| 固安县| 怀来县| 双辽市| 南通市| 台湾省| 西华县| 横峰县| 洪泽县| 福建省| 周宁县| 滁州市| 长海县| 阳原县| 鹤庆县| 吐鲁番市| 昌都县| 鹤山市| 林西县| 舞阳县| 克山县| 波密县| 临沂市| 大姚县| 武强县| 郴州市| 望都县| 沈丘县| 封丘县| 绵阳市| 澄城县| 金川县| 库尔勒市| 芒康县| 年辖:市辖区| 松阳县| 临桂县| 九寨沟县| 巴彦淖尔市| 宜城市|