找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra II; Chapters 4 - 7 Nicolas Bourbaki Textbook 2003 Springer-Verlag GmbH Germany, part of Springer Nature 2003 MSC (2000): 12-02, 13-

[復(fù)制鏈接]
查看: 53585|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:18:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebra II
期刊簡稱Chapters 4 - 7
影響因子2023Nicolas Bourbaki
視頻videohttp://file.papertrans.cn/153/152470/152470.mp4
圖書封面Titlebook: Algebra II; Chapters 4 - 7 Nicolas Bourbaki Textbook 2003 Springer-Verlag GmbH Germany, part of Springer Nature 2003 MSC (2000): 12-02, 13-
影響因子.This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki‘s, .Algèbre., Chapters 4 to 7 (1981). ..This?completes .Algebra., 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regularextensions. Chapter 6 treats ordered groups and fields and based on it is Chapter 7: modules over a p.i.d. studies of torsion modules, free modules, finite type modules, with applications to abelian groups and endomorphisms of ve
Pindex Textbook 2003
The information of publication is updating

書目名稱Algebra II影響因子(影響力)




書目名稱Algebra II影響因子(影響力)學(xué)科排名




書目名稱Algebra II網(wǎng)絡(luò)公開度




書目名稱Algebra II網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebra II被引頻次




書目名稱Algebra II被引頻次學(xué)科排名




書目名稱Algebra II年度引用




書目名稱Algebra II年度引用學(xué)科排名




書目名稱Algebra II讀者反饋




書目名稱Algebra II讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:37:43 | 只看該作者
Commutative Fields,the algebra homomorphisms are unital, every subalgebra of an algebra contains the unit element of that algebra. Whenever a field K is said to be contained in a ring L (in particular in a field) without further specification, it is understood that K is a subring of L; we shall also say that K is a su
板凳
發(fā)表于 2025-3-22 02:53:43 | 只看該作者
Ordered groups and fields,ase being that of .. Unless explicitly stated otherwise, we will use . notation for the composition law in all groups and monoids under study. On the other hand, as we go along we will present certain important algebraic applications of the theory of ordered groups and monoids, and we will according
地板
發(fā)表于 2025-3-22 06:09:58 | 只看該作者
5#
發(fā)表于 2025-3-22 08:59:06 | 只看該作者
https://doi.org/10.1007/978-3-658-22046-4the algebra homomorphisms are unital, every subalgebra of an algebra contains the unit element of that algebra. Whenever a field K is said to be contained in a ring L (in particular in a field) without further specification, it is understood that K is a subring of L; we shall also say that K is a su
6#
發(fā)表于 2025-3-22 16:17:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:28:12 | 只看該作者
https://doi.org/10.1007/978-3-642-61698-3MSC (2000): 12-02, 13-02, 12Fxx, 12J15, 13F10, 13C10, 12E05,; YellowSale2006; commutative fields; order
8#
發(fā)表于 2025-3-22 22:41:29 | 只看該作者
978-3-540-00706-7Springer-Verlag GmbH Germany, part of Springer Nature 2003
9#
發(fā)表于 2025-3-23 03:57:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:01 | 只看該作者
Modules over principal ideal domains,Recall (I, p. 104) that an ideal of a commutative ring A is said to be . if it has the form (.)= A. for some . ∈ A.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭东县| 连山| 汕头市| 沙坪坝区| 阜新市| 义乌市| 毕节市| 金沙县| 台州市| 建水县| 肥东县| 延寿县| 大厂| 铁岭县| 石城县| 阿合奇县| 福安市| 巩留县| 高州市| 壶关县| 遂川县| 陕西省| 虹口区| 乌拉特前旗| 沽源县| 安阳市| 开阳县| 普格县| 青川县| 万盛区| 赤壁市| 泰和县| 永年县| 津南区| 麻城市| 靖江市| 高清| 镇巴县| 天门市| 岳西县| 平阴县|