找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra 1; Groups, Rings, Field Ramji Lal Textbook 2017 Springer Nature Singapore Pte Ltd. 2017 Algebra.Number System.Group Theory.Arithmet

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 06:43:45 | 只看該作者
22#
發(fā)表于 2025-3-25 07:44:12 | 只看該作者
Entity Relationship - Modellierung,This chapter is devoted to the study of rings in relation to their arithmetical properties.
23#
發(fā)表于 2025-3-25 13:23:36 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:59 | 只看該作者
Number System,This is the first introduction to arithmetic in which we develop number systems (including real number system and complex number system) starting from the Peano’s axiom. We also discuss linear diophantine equation and linear congruences.
25#
發(fā)表于 2025-3-25 22:11:22 | 只看該作者
Group Theory,One of the most fundamental concepts in mathematics today is that of a group. This present chapter concerns the basic introduction to groups.
26#
發(fā)表于 2025-3-26 00:21:08 | 只看該作者
Fundamental Theorems,This chapter is devoted to some fundamental theorems such as Lagrange Theorem and Isomorphism Theorems. We also discuss the direct decomposition of groups into indecomposable groups.
27#
發(fā)表于 2025-3-26 06:17:41 | 只看該作者
Permutation Groups and Classical Groups,The two main sources of groups are the permutation groups and the matrix groups. This chapter is devoted to introduce these groups, and to study some of their fundamental and elementary properties.
28#
發(fā)表于 2025-3-26 09:23:31 | 只看該作者
Elementary Theory of Rings and Fields,Ring is an important algebraic structure with two compatible binary operations whose intrinsic presence in almost every discipline of mathematics is frequently noticed. The theory of rings, in the beginning, will be developed on the pattern the theory of groups was developed.
29#
發(fā)表于 2025-3-26 14:18:24 | 只看該作者
30#
發(fā)表于 2025-3-26 19:15:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳江市| 长丰县| 专栏| 深水埗区| 颍上县| 威远县| 凤阳县| 乐安县| 枣强县| 登封市| 教育| 博客| 辽阳市| 西峡县| 云浮市| 南乐县| 阳朔县| 绥芬河市| 灌南县| 九台市| 天津市| 威海市| 涿鹿县| 乌鲁木齐县| 阜南县| 永昌县| 来安县| 通州区| 沁源县| 威海市| 桂阳县| 深水埗区| 黑河市| 桂东县| 莱阳市| 青神县| 中西区| 大荔县| 基隆市| 西贡区| 平昌县|