找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Für Studierende der Gisbert Wüstholz,Clemens Fuchs Textbook 2020Latest edition Springer Fachmedien Wiesbaden GmbH, ein Teil von S

[復(fù)制鏈接]
樓主: 重要
21#
發(fā)表于 2025-3-25 07:03:45 | 只看該作者
Konzept der integrierten Datenbank IDS II,Es sei . ein unit?rer kommutativer Ring. Wir betrachten die Menge Γ(?, .) der Abbildungen .: ? → . mit endlichem Tr?ger supp(.) = {. ∈ ?; .(.) ≠ 0}. Diese k?nnen addiert und mit Ringelementen von links multipliziert werden, indem man (. + .)(.) = .(.) + .(.) und (.)(.) = .(n) für . ∈ . setzt.
22#
發(fā)表于 2025-3-25 10:54:33 | 只看該作者
SymmetrienDer Gruppenbegriff entwickelte sich aus dem Begriff der ?Transformationsgruppe“. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie, Kunst, Architektur und Musik auf.
23#
發(fā)表于 2025-3-25 12:19:53 | 只看該作者
über das L?sen von GleichungenWie bereits erw?hnt, sind gro?e Teile der modernen Algebra aus dem Problem der L?sung algebraischer Gleichungen entstanden. Der Herleitung der bekannten L?sungsformel von Gleichungen vom Grad ≤ 4 ist der nun folgende Abschnitt gewidmet.
24#
發(fā)表于 2025-3-25 15:57:07 | 只看該作者
25#
發(fā)表于 2025-3-25 21:16:13 | 只看該作者
Die S?tze von SylowEs sei . eine endliche Gruppe und . eine Untergruppe. Nach dem Satz von Lagrange (Satz 1.34) teilt die Ordnung von . die Ordnung von .. In diesem Kapitel werden wir versuchen, die Struktur von endlichen Gruppen zu verstehen. Die sogenannten Sylow-S?tze sind hierfür ein wichtiges Hilfsmittel.
26#
發(fā)表于 2025-3-26 03:16:08 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:24 | 只看該作者
Platonische K?rperIn diesem Kapitel werden wir darlegen, wie abstrakte Gruppentheorie, elementare Geometrie und Kombinatorik in wunderbarer Weise zusammenspielen. Ein besonders sch?nes Beispiel hierfür sind die von dem griechischen Philosophen Platon gefundenen K?rper. Es gibt genau fünf solche platonische K?rper, was sehr überraschend ist.
28#
發(fā)表于 2025-3-26 08:58:19 | 只看該作者
Universelle KonstruktionenIn der Algebra gibt es eine ganze Reihe von immer wiederkehrenden Konstruktionen, die wir nun kurz vorstellen werden. Da Gruppen die einfachsten interessanten algebraischen Strukturen sind, bietet es sich an, für diese modellhaft einige besonders interessante Konstruktionen vorzuführen.
29#
發(fā)表于 2025-3-26 16:35:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:58:00 | 只看該作者
RingeIn diesem Kapitel beginnen wir mit der Theorie von Ringen, die nach den Gruppen n?chste wichtige algebraische Struktur mit vielf?ltigen Anwendungen in den verschiedensten mathematischen Theorien. Wie bei den Gruppen sind die Grundlage der Theorie die Axiome eines Ringes, die wir nun formulieren.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
略阳县| 山丹县| 天津市| 邮箱| 广灵县| 临西县| 曲阳县| 广丰县| 昌黎县| 岑巩县| 五华县| 宜宾县| 绥江县| 高平市| 金山区| 丹凤县| 绥棱县| 邵阳县| 商洛市| 故城县| 龙海市| 资中县| 永登县| 教育| 延寿县| 太仆寺旗| 宜君县| 乌兰察布市| 米林县| 泸水县| 望谟县| 观塘区| 刚察县| 正定县| 衡阳市| 缙云县| 南雄市| 西城区| 从化市| 博爱县| 垦利县|