找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Für Studierende der Gisbert Wüstholz,Clemens Fuchs Textbook 2020Latest edition Springer Fachmedien Wiesbaden GmbH, ein Teil von S

[復制鏈接]
樓主: 重要
21#
發(fā)表于 2025-3-25 07:03:45 | 只看該作者
Konzept der integrierten Datenbank IDS II,Es sei . ein unit?rer kommutativer Ring. Wir betrachten die Menge Γ(?, .) der Abbildungen .: ? → . mit endlichem Tr?ger supp(.) = {. ∈ ?; .(.) ≠ 0}. Diese k?nnen addiert und mit Ringelementen von links multipliziert werden, indem man (. + .)(.) = .(.) + .(.) und (.)(.) = .(n) für . ∈ . setzt.
22#
發(fā)表于 2025-3-25 10:54:33 | 只看該作者
SymmetrienDer Gruppenbegriff entwickelte sich aus dem Begriff der ?Transformationsgruppe“. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie, Kunst, Architektur und Musik auf.
23#
發(fā)表于 2025-3-25 12:19:53 | 只看該作者
über das L?sen von GleichungenWie bereits erw?hnt, sind gro?e Teile der modernen Algebra aus dem Problem der L?sung algebraischer Gleichungen entstanden. Der Herleitung der bekannten L?sungsformel von Gleichungen vom Grad ≤ 4 ist der nun folgende Abschnitt gewidmet.
24#
發(fā)表于 2025-3-25 15:57:07 | 只看該作者
25#
發(fā)表于 2025-3-25 21:16:13 | 只看該作者
Die S?tze von SylowEs sei . eine endliche Gruppe und . eine Untergruppe. Nach dem Satz von Lagrange (Satz 1.34) teilt die Ordnung von . die Ordnung von .. In diesem Kapitel werden wir versuchen, die Struktur von endlichen Gruppen zu verstehen. Die sogenannten Sylow-S?tze sind hierfür ein wichtiges Hilfsmittel.
26#
發(fā)表于 2025-3-26 03:16:08 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:24 | 只看該作者
Platonische K?rperIn diesem Kapitel werden wir darlegen, wie abstrakte Gruppentheorie, elementare Geometrie und Kombinatorik in wunderbarer Weise zusammenspielen. Ein besonders sch?nes Beispiel hierfür sind die von dem griechischen Philosophen Platon gefundenen K?rper. Es gibt genau fünf solche platonische K?rper, was sehr überraschend ist.
28#
發(fā)表于 2025-3-26 08:58:19 | 只看該作者
Universelle KonstruktionenIn der Algebra gibt es eine ganze Reihe von immer wiederkehrenden Konstruktionen, die wir nun kurz vorstellen werden. Da Gruppen die einfachsten interessanten algebraischen Strukturen sind, bietet es sich an, für diese modellhaft einige besonders interessante Konstruktionen vorzuführen.
29#
發(fā)表于 2025-3-26 16:35:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:58:00 | 只看該作者
RingeIn diesem Kapitel beginnen wir mit der Theorie von Ringen, die nach den Gruppen n?chste wichtige algebraische Struktur mit vielf?ltigen Anwendungen in den verschiedensten mathematischen Theorien. Wie bei den Gruppen sind die Grundlage der Theorie die Axiome eines Ringes, die wir nun formulieren.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 12:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邯郸市| 深泽县| 双桥区| 布拖县| 灵璧县| 布尔津县| 东安县| 拉孜县| 灌南县| 惠州市| 景德镇市| 嵊州市| 涿鹿县| 通江县| 金山区| 大厂| 延津县| 建阳市| 浪卡子县| 安丘市| 常熟市| 甘德县| 通化市| 凤山县| 临汾市| 佛冈县| 万荣县| 沾化县| 海淀区| 三门峡市| 留坝县| 巍山| 苏州市| 井冈山市| 东明县| 永新县| 长垣县| 卓资县| 交城县| 兴文县| 湘潭县|