找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Gruppen - Ringe - K? Christian Karpfinger,Kurt Meyberg Textbook 20102nd edition Spektrum Akademischer Verlag 2010 Abelsche Gruppe.

[復(fù)制鏈接]
樓主: DART
21#
發(fā)表于 2025-3-25 06:23:34 | 只看該作者
Dierk Hirschel,Peter Paic,Markus ZwickNach Korollar 2.16 ist jede endliche Gruppe als Untergruppe einer symmetrischen Gruppe auffassbar. In diesem Kapitel untersuchen wir die symmetrischen Gruppen genauer. Wir werden unter anderem feststellen, dass jede symmetrische Gruppe ., . ≥ 2, einen Normalteiler . mit |.| = ?.! besitzt – ..
22#
發(fā)表于 2025-3-25 08:31:18 | 只看該作者
https://doi.org/10.1007/978-3-8274-2391-7In Kapitel 10 haben wir die endlichen abelschen Gruppen klassifiziert. Im vorliegenden Kapitel werden wir eine Verallgemeinerung abelscher Gruppen untersuchen – die .. Die Namensgebung h?ngt mit der . algebraischer Gleichungen zusammen; dieser Zusammenhang wird erst im Kapitel 29 erl?utert.
23#
發(fā)表于 2025-3-25 13:53:00 | 只看該作者
https://doi.org/10.1007/978-3-8274-2391-7Der Ringbegriff ist aus der linearen Algebra bekannt. Dort werden üblicherweise die Ringe ?, ?, ?, ?, der Ring der . × .-Matrizen . für jeden K?rper . und jede natürliche Zahl . und eventuell auch der Ring .[.] aller Polynome über einem K?rper . behandelt.
24#
發(fā)表于 2025-3-25 16:15:11 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:31 | 只看該作者
26#
發(fā)表于 2025-3-26 01:50:21 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:15 | 只看該作者
Symmetrische und alternierende Gruppen,Nach Korollar 2.16 ist jede endliche Gruppe als Untergruppe einer symmetrischen Gruppe auffassbar. In diesem Kapitel untersuchen wir die symmetrischen Gruppen genauer. Wir werden unter anderem feststellen, dass jede symmetrische Gruppe ., . ≥ 2, einen Normalteiler . mit |.| = ?.! besitzt – ..
28#
發(fā)表于 2025-3-26 10:16:02 | 只看該作者
,Aufl?sbare Gruppen,In Kapitel 10 haben wir die endlichen abelschen Gruppen klassifiziert. Im vorliegenden Kapitel werden wir eine Verallgemeinerung abelscher Gruppen untersuchen – die .. Die Namensgebung h?ngt mit der . algebraischer Gleichungen zusammen; dieser Zusammenhang wird erst im Kapitel 29 erl?utert.
29#
發(fā)表于 2025-3-26 14:14:55 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钦州市| 石门县| 白城市| 威远县| 滁州市| 衡水市| 苍山县| 赤城县| 上高县| 黔西| 子洲县| 宁乡县| 西安市| 宽甸| 枣强县| 河间市| 神池县| 黎城县| 收藏| 东乌| 全州县| 台山市| 大余县| 新巴尔虎左旗| 玛曲县| 绥江县| 西林县| 佛教| 德昌县| 东阿县| 平武县| 广饶县| 望都县| 榕江县| 梁山县| 奈曼旗| 邵东县| 黄大仙区| 方城县| 北辰区| 大田县|