找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Gruppen - Ringe - K? Christian Karpfinger,Kurt Meyberg Textbook 20133rd edition Spektrum Akademischer Verlag 2013 Galois-Theorie.G

[復(fù)制鏈接]
樓主: 摩擦
21#
發(fā)表于 2025-3-25 04:48:27 | 只看該作者
22#
發(fā)表于 2025-3-25 10:08:11 | 只看該作者
Gruppen,Eine Halbgruppe . mit neutralem Element hei?t ., wenn .. = . gilt, d. h. wenn jedes Element von . invertierbar ist. Dieser . Gruppenbegriff geht auf A. Cayley 1854 (für endliche Gruppen), auf L. Kronecker 1870 (für abelsche Gruppen) und in endgültiger Form auf H. Weber 1892 zurück.
23#
發(fā)表于 2025-3-25 11:46:01 | 只看該作者
Untergruppen,Der erste etwas tieferliegende Struktursatz der Theorie endlicher Gruppen ist der . Er besagt, dass eine endliche Gruppe mit . Elementen h?chstens Untergruppen . haben kann, deren Ordnungen Teiler von . sind.
24#
發(fā)表于 2025-3-25 17:53:11 | 只看該作者
Normalteiler und Faktorgruppen,Ist . eine Untergruppe einer Gruppe ., so liefert die Menge der Linksnebenklassen .. eine Partition von . Wir wollen auf dieser Menge . der Linksnebenklassen eine Verknüpfung erkl?ren, sodass . damit ebenfalls eine Gruppe ergibt.
25#
發(fā)表于 2025-3-25 22:41:01 | 只看該作者
Zyklische Gruppen,Zyklische Gruppen sind jene Gruppen, die von einem Element erzeugt werden, genauer: Eine Gruppe . hei?t ., wenn es ein Element . mit . gibt.
26#
發(fā)表于 2025-3-26 02:59:03 | 只看該作者
Direkte Produkte,In Kapitel 5 wurden s?mtliche zyklische Gruppen bestimmt. Um nun weitere Klassen von Gruppen klassifizieren k?nnen, versuchen wir, die im Allgemeinen sehr komplexen Gruppen in . von . oder . Gruppen zu .. In einem weiteren Schritt k?nnen wir dann versuchen, die m?glicherweise einfacheren . der Gruppe zu klassifizieren.
27#
發(fā)表于 2025-3-26 07:18:20 | 只看該作者
Gruppenoperationen,Am h?ufigsten treten Gruppen in der Natur als Gruppen bijektiver Abbildungen auf. Das ist nicht verwunderlich, da man ja nach dem Satz von Cayley jede Gruppe . so darstellen kann.
28#
發(fā)表于 2025-3-26 10:18:19 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:50 | 只看該作者
30#
發(fā)表于 2025-3-26 18:10:43 | 只看該作者
,Der Hauptsatz über endliche abelsche Gruppen,Das Ziel dieses Kapitels ist es, die endlichen abelschen Gruppen zu klassifizieren.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘泉县| 神木县| 永春县| 邵阳县| 宜宾市| 鹤庆县| 涞水县| 平原县| 安乡县| 申扎县| 濮阳市| 肇州县| 巴马| 娄烦县| 拉萨市| 北票市| 麻阳| 手游| 辰溪县| 溧阳市| 山阳县| 碌曲县| 云浮市| 崇文区| 邵东县| 乌苏市| 长泰县| 昭平县| 柏乡县| 西华县| 承德县| 隆回县| 蓬安县| 张家口市| 岚皋县| 孝义市| 多伦县| 三门县| 疏勒县| 沁源县| 九江县|