找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Gruppen - Ringe - K? Christian Karpfinger,Kurt Meyberg Textbook 20133rd edition Spektrum Akademischer Verlag 2013 Galois-Theorie.G

[復(fù)制鏈接]
樓主: 摩擦
21#
發(fā)表于 2025-3-25 04:48:27 | 只看該作者
22#
發(fā)表于 2025-3-25 10:08:11 | 只看該作者
Gruppen,Eine Halbgruppe . mit neutralem Element hei?t ., wenn .. = . gilt, d. h. wenn jedes Element von . invertierbar ist. Dieser . Gruppenbegriff geht auf A. Cayley 1854 (für endliche Gruppen), auf L. Kronecker 1870 (für abelsche Gruppen) und in endgültiger Form auf H. Weber 1892 zurück.
23#
發(fā)表于 2025-3-25 11:46:01 | 只看該作者
Untergruppen,Der erste etwas tieferliegende Struktursatz der Theorie endlicher Gruppen ist der . Er besagt, dass eine endliche Gruppe mit . Elementen h?chstens Untergruppen . haben kann, deren Ordnungen Teiler von . sind.
24#
發(fā)表于 2025-3-25 17:53:11 | 只看該作者
Normalteiler und Faktorgruppen,Ist . eine Untergruppe einer Gruppe ., so liefert die Menge der Linksnebenklassen .. eine Partition von . Wir wollen auf dieser Menge . der Linksnebenklassen eine Verknüpfung erkl?ren, sodass . damit ebenfalls eine Gruppe ergibt.
25#
發(fā)表于 2025-3-25 22:41:01 | 只看該作者
Zyklische Gruppen,Zyklische Gruppen sind jene Gruppen, die von einem Element erzeugt werden, genauer: Eine Gruppe . hei?t ., wenn es ein Element . mit . gibt.
26#
發(fā)表于 2025-3-26 02:59:03 | 只看該作者
Direkte Produkte,In Kapitel 5 wurden s?mtliche zyklische Gruppen bestimmt. Um nun weitere Klassen von Gruppen klassifizieren k?nnen, versuchen wir, die im Allgemeinen sehr komplexen Gruppen in . von . oder . Gruppen zu .. In einem weiteren Schritt k?nnen wir dann versuchen, die m?glicherweise einfacheren . der Gruppe zu klassifizieren.
27#
發(fā)表于 2025-3-26 07:18:20 | 只看該作者
Gruppenoperationen,Am h?ufigsten treten Gruppen in der Natur als Gruppen bijektiver Abbildungen auf. Das ist nicht verwunderlich, da man ja nach dem Satz von Cayley jede Gruppe . so darstellen kann.
28#
發(fā)表于 2025-3-26 10:18:19 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:50 | 只看該作者
30#
發(fā)表于 2025-3-26 18:10:43 | 只看該作者
,Der Hauptsatz über endliche abelsche Gruppen,Das Ziel dieses Kapitels ist es, die endlichen abelschen Gruppen zu klassifizieren.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁海县| 峨眉山市| 修文县| 白朗县| 景德镇市| 黎平县| 七台河市| 永泰县| 永仁县| 屏东市| 福贡县| 洱源县| 宁南县| 靖西县| 中西区| 双桥区| 衡南县| 江津市| 亳州市| 临湘市| 常州市| 静安区| 黎城县| 余姚市| 平顺县| 高要市| 射洪县| 汝城县| 措美县| 朝阳县| 和田县| 石棉县| 邯郸市| 龙里县| 长宁区| 舞钢市| 南和县| 随州市| 隆林| 商河县| 娄底市|