找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Rings, Modules and C Carl Faith Book 1973 Springer-Verlag, Berlin · Heidelberg 1973 Autodesk Maya.Coproduct.Kategorie.Modul.algebr

[復(fù)制鏈接]
樓主: Croching
41#
發(fā)表于 2025-3-28 14:42:36 | 只看該作者
Somaclonal Variation in Date Palm of the Picard group Pic (mod-.) of all .-linear auto-equivalences of mod-. for an arbitrary algebra ., and also (in Exercises for Chapter 12, and in Chapter 32) of the Brauer group of a commutative ring .
42#
發(fā)表于 2025-3-28 20:19:27 | 只看該作者
A. El Hadrami,F. Daayf,I. El Hadramitheorems for a finite dimensional algebras . over an algebraically closed field . If . has no nilpotent ideals ≠ 0, then . is a finite product of total matrix algebras over . In this case, the set . (.) of degrees of the total matrix algebras is a complete set of invariants of . Thus, 13.7 two finit
43#
發(fā)表于 2025-3-29 01:11:36 | 只看該作者
44#
發(fā)表于 2025-3-29 05:25:15 | 只看該作者
Noetherian Semiprime Ringsand sufficient for a ring . to possess a classical quotient ring: If ., . ∈ ., and if . is regular, then there exist .., .. ∈ ., .. regular, such that ..= .. (see 9.1). If . is commutative, this condition is automatic, and if . is a domain, this is the Ore condition.
45#
發(fā)表于 2025-3-29 10:10:41 | 只看該作者
46#
發(fā)表于 2025-3-29 15:23:42 | 只看該作者
Morita Theorems and the Picard Group of the Picard group Pic (mod-.) of all .-linear auto-equivalences of mod-. for an arbitrary algebra ., and also (in Exercises for Chapter 12, and in Chapter 32) of the Brauer group of a commutative ring .
47#
發(fā)表于 2025-3-29 17:25:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:58:32 | 只看該作者
Big Data und die Frage nach der AnerkennungThe concepts introduced and explored in this chapter are so fundamental that scarcely any of them can be dispensed with hereafter.
49#
發(fā)表于 2025-3-29 23:53:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:51:34 | 只看該作者
https://doi.org/10.1007/978-94-007-1318-5Grothendieck [57] introduced the notation for abelian categories which follows:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通州区| 阳东县| 阿克苏市| 澜沧| 邯郸县| 阳春市| 云南省| 西乡县| 桐柏县| 乌什县| 黑龙江省| 台州市| 舟曲县| 昭通市| 蓬莱市| 泊头市| 买车| 武汉市| 科技| 连城县| 湟源县| 佛教| 铜川市| 宁武县| 嘉祥县| 那曲县| 乐亭县| 静安区| 武邑县| 社旗县| 荥经县| 铜梁县| 元朗区| 曲阳县| 勐海县| 牟定县| 丰顺县| 双柏县| 道真| 都安| 尼勒克县|