找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Gruppen - Ringe - K? Christian Karpfinger,Kurt Meyberg Textbook 20174th edition Springer-Verlag GmbH Deutschland 2017 Galois-Theor

[復制鏈接]
樓主: Exacting
51#
發(fā)表于 2025-3-30 12:15:58 | 只看該作者
52#
發(fā)表于 2025-3-30 14:31:04 | 只看該作者
https://doi.org/10.1007/b106971Satz von Lagrange wissen wir zwar, dass die Ordnung einer Untergruppe ein Teiler der Gruppenordnung ist, jedoch wissen wir im Allgemeinen nicht, ob auch zu jedem Teiler der Gruppenordnung eine Untergruppe dieser Ordnung existiert. Es gibt Beispiele von Gruppen, in denen solche Untergruppen nicht existieren.
53#
發(fā)表于 2025-3-30 19:50:08 | 只看該作者
https://doi.org/10.1007/978-3-031-01752-0rieller Ring. In Hauptidealringen und in euklidischen Ringen fallen also die Begriffe Primelement und unzerlegbares Element zusammen. Weiter zeigen wir, dass für jeden K?rper . der Polynomring . euklidisch ist. Polynomringe über K?rpern sind damit insbesondere Hauptidealringe und faktoriell.
54#
發(fā)表于 2025-3-30 21:20:39 | 只看該作者
Gruppenchste Eigenschaften. Insbesondere interessieren uns die sogenannten Untergruppen einer Gruppe ., das sind Teilmengen ., die mit der Verknüpfung aus . wieder Gruppen bilden. Der Satz von Cayley besagt, dass jede Gruppe eine Untergruppe einer symmetrischen Gruppe ist.
55#
發(fā)表于 2025-3-31 04:31:34 | 只看該作者
56#
發(fā)表于 2025-3-31 05:21:25 | 只看該作者
Die S?tze von SylowSatz von Lagrange wissen wir zwar, dass die Ordnung einer Untergruppe ein Teiler der Gruppenordnung ist, jedoch wissen wir im Allgemeinen nicht, ob auch zu jedem Teiler der Gruppenordnung eine Untergruppe dieser Ordnung existiert. Es gibt Beispiele von Gruppen, in denen solche Untergruppen nicht existieren.
57#
發(fā)表于 2025-3-31 09:32:22 | 只看該作者
58#
發(fā)表于 2025-3-31 16:52:42 | 只看該作者
59#
發(fā)表于 2025-3-31 18:19:21 | 只看該作者
Freie Gruppen *ysteme) frei. Wir zeigen, dass es zu jeder Menge . eine freie Gruppe . mit freiem Erzeugendensystem . gibt. Dannach pr?zisieren wir den Begriff der Relation und begründen, warum jede durch Erzeugende und Relationen definierte Gruppe darstellbar ist als Faktorgruppe einer freien Gruppe.
60#
發(fā)表于 2025-3-31 22:12:38 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 10:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平阳县| 兰坪| 密云县| 象州县| 北宁市| 卢湾区| 岱山县| 贞丰县| 固镇县| 南通市| 顺昌县| 阿图什市| 安平县| 左权县| 贡觉县| 潞城市| 泽普县| 温泉县| 米泉市| 南丰县| 泗阳县| 闻喜县| 桃江县| 敖汉旗| 蒙山县| 西和县| 漾濞| 陕西省| 重庆市| 绥宁县| 南安市| 堆龙德庆县| 隆化县| 沙雅县| 双柏县| 黄平县| 马公市| 昆山市| 龙游县| 西乌珠穆沁旗| 隆尧县|