找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Algebra; Some Recent Advances I. B. S. Passi Book 1999 Hindustan Book Agency (India) and Indian National Science Academy 1999 Area.Volume.a

[復(fù)制鏈接]
樓主: 悲傷我
51#
發(fā)表于 2025-3-30 09:48:11 | 只看該作者
Alternative Loop Rings and Related Topics,, see Definition 3.1). The . of . over . was introduced in 1944 by R.H. Bruck (1944) as a means to obtain a family of examples of nonassociative algebras and is defined in a way similar to that of a group algebra; i.e., as the free A-module with basis ., with a multiplication induced distributively from the operation in .
52#
發(fā)表于 2025-3-30 15:20:52 | 只看該作者
Md Musfique Anwar,Jianxin Li,Chengfei Liu(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
53#
發(fā)表于 2025-3-30 16:53:17 | 只看該作者
Xiu Susie Fang,Xianzhi Wang,Quan Z. Shenger fields, a main step in the proof of these conjectures is a classification theorem of hermitian forms over involutorial division algebras defined over fields of virtual cohomological dimension ≤ 2, which is described in § 6 and § 7.
54#
發(fā)表于 2025-3-30 21:10:59 | 只看該作者
Lei Li,Xiaofang Zhou,Kevin Zhengtally, to the construction in ([PI]) of non diagonalisable, (in fact indecomposable), non singular symmetric 4 × 4 matrices of determinant one over the polynomial ring in two variables over the field of real numbers, producing remarkable counter examples to the so called quadratic analogue of Serre’
55#
發(fā)表于 2025-3-31 01:29:11 | 只看該作者
Unit Groups of Group Rings,(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
56#
發(fā)表于 2025-3-31 05:59:41 | 只看該作者
57#
發(fā)表于 2025-3-31 09:28:12 | 只看該作者
58#
發(fā)表于 2025-3-31 15:55:50 | 只看該作者
10樓
59#
發(fā)表于 2025-3-31 20:43:52 | 只看該作者
10樓
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁怀市| 光泽县| 正镶白旗| 宜川县| 普陀区| 甘谷县| 黄山市| 永新县| 佛山市| 黎平县| 会宁县| 深水埗区| 山西省| 略阳县| 富民县| 安乡县| 平潭县| 乌鲁木齐市| 榆中县| 东山县| 迁西县| 崇州市| 蒲江县| 富宁县| 芮城县| 赤水市| 富川| 古蔺县| 台安县| 涪陵区| 西城区| 枣阳市| 汉沽区| 宁国市| 察雅县| 马尔康县| 隆尧县| 五大连池市| 同心县| 诏安县| 安仁县|