找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Some Recent Advances I. B. S. Passi Book 1999 Hindustan Book Agency (India) and Indian National Science Academy 1999 Area.Volume.a

[復制鏈接]
樓主: 悲傷我
51#
發(fā)表于 2025-3-30 09:48:11 | 只看該作者
Alternative Loop Rings and Related Topics,, see Definition 3.1). The . of . over . was introduced in 1944 by R.H. Bruck (1944) as a means to obtain a family of examples of nonassociative algebras and is defined in a way similar to that of a group algebra; i.e., as the free A-module with basis ., with a multiplication induced distributively from the operation in .
52#
發(fā)表于 2025-3-30 15:20:52 | 只看該作者
Md Musfique Anwar,Jianxin Li,Chengfei Liu(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
53#
發(fā)表于 2025-3-30 16:53:17 | 只看該作者
Xiu Susie Fang,Xianzhi Wang,Quan Z. Shenger fields, a main step in the proof of these conjectures is a classification theorem of hermitian forms over involutorial division algebras defined over fields of virtual cohomological dimension ≤ 2, which is described in § 6 and § 7.
54#
發(fā)表于 2025-3-30 21:10:59 | 只看該作者
Lei Li,Xiaofang Zhou,Kevin Zhengtally, to the construction in ([PI]) of non diagonalisable, (in fact indecomposable), non singular symmetric 4 × 4 matrices of determinant one over the polynomial ring in two variables over the field of real numbers, producing remarkable counter examples to the so called quadratic analogue of Serre’
55#
發(fā)表于 2025-3-31 01:29:11 | 只看該作者
Unit Groups of Group Rings,(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
56#
發(fā)表于 2025-3-31 05:59:41 | 只看該作者
57#
發(fā)表于 2025-3-31 09:28:12 | 只看該作者
58#
發(fā)表于 2025-3-31 15:55:50 | 只看該作者
10樓
59#
發(fā)表于 2025-3-31 20:43:52 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 18:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
张家港市| 上虞市| 陇西县| 云梦县| 沁源县| 叙永县| 舒城县| 霍邱县| 渝北区| 个旧市| 阿拉尔市| 兰州市| 蓬安县| 石门县| 拜泉县| 普安县| 鹰潭市| 专栏| 新兴县| 长岭县| 武胜县| 射阳县| 同心县| 通州市| 大英县| 德惠市| 黄石市| 加查县| 武城县| 永德县| 桦川县| 海丰县| 久治县| 芜湖县| 金乡县| 绥芬河市| 许昌县| 福贡县| 荃湾区| 中阳县| 闽侯县|