找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; An Approach via Modu William A. Adkins,Steven H. Weintraub Textbook 1992 Springer Science+Business Media New York 1992 Permutatio

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:02:02 | 只看該作者
Groups,In this chapter we introduce groups and prove some of the basic theorems in group theory. One of these, the structure theorem for finitely generated abelian groups, we do not prove here but instead derive it as a corollary of the more general structure theorem for finitely generated modules over a PID (see Theorem 3.7.22).
12#
發(fā)表于 2025-3-23 13:51:44 | 只看該作者
Rings,(1.1) Definition. . ring (.,+,) . +: . ×.→. (.) . : . ×.→. (.) ..
13#
發(fā)表于 2025-3-23 21:47:07 | 只看該作者
14#
發(fā)表于 2025-3-23 23:50:03 | 只看該作者
15#
發(fā)表于 2025-3-24 05:28:55 | 只看該作者
Group Representations,We begin by defining the objects that we are interested in studying. Recall that if . is a ring and . is a group, then .(.) denotes the group ring of . with coefficients from .. The multiplication on .(.) is the convolution product (see Example 2.1.10 (15)).
16#
發(fā)表于 2025-3-24 06:47:34 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152413.jpg
17#
發(fā)表于 2025-3-24 11:20:00 | 只看該作者
Algebra978-1-4612-0923-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
18#
發(fā)表于 2025-3-24 15:37:58 | 只看該作者
Linear Algebra,al form theory for a linear transformation from a vector space to itself. The fundamental results will be presented in Section 4.4. We will start with a rather detailed introduction to the elementary aspects of matrix algebra, including the theory of determinants and matrix representation of linear
19#
發(fā)表于 2025-3-24 21:37:20 | 只看該作者
Matrices over PIDs,y if the .[.]-modules . and . are isomorphic (Theorem 4.4.2). Since the structure theorem for finitely generated torsion .[.]-modules gives a criterion for isomorphism in terms of the invariant factors (or elementary divisors), one has a powerful tool for studying linear transformations, up to simil
20#
發(fā)表于 2025-3-25 02:29:14 | 只看該作者
Bilinear and Quadratic Forms, means of the operations (.+.)(.)=.(.)+.(.) and (.)(.)= .(.(.)) for all .. Moreover, if . then Hom.(.)= End .(.) is a ring under the multiplication (.)(.)=.(.(.)). An .-module ., which is also a ring, is called an .-algebra if it satisfies the extra axiom .(.)=(.).=.(.) for all . ∈ . and . ∈ .. Thus
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珲春市| 育儿| 林州市| 五河县| 景德镇市| 乐业县| 屯昌县| 漳州市| 玉龙| 宁德市| 陈巴尔虎旗| 金山区| 剑河县| 奉节县| 上虞市| 新干县| 寿阳县| 南乐县| 绥阳县| 沙河市| 大悟县| 西畴县| 曲周县| 扬州市| 沅陵县| 长顺县| 吉木萨尔县| 同江市| 岳阳市| 梓潼县| 和田市| 宁波市| 文登市| 隆子县| 岗巴县| 潮安县| 武穴市| 翼城县| 五常市| 乐平市| 武穴市|