找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Alfred Tarski; Early Work in Poland Andrew McFarland,Joanna McFarland,James T. Smith Book 2014 Springer Science+Business Media New York 201

[復(fù)制鏈接]
樓主: Osteopenia
51#
發(fā)表于 2025-3-30 09:59:51 | 只看該作者
Doctoral Researchof Warsaw, and various other aspects of his life during 1921–1924. These include some personal details, his parttime employment as a teacher during his student years, his doctoral research, and his early participation in professional meetings. It provides a setting for both the detailed mathematics
52#
發(fā)表于 2025-3-30 13:37:30 | 只看該作者
Area, Volume, Measureal region . is computed by decomposing . into a finite number of polygonal components with disjoint interiors, which can be reassembled to form a rectangle . with unit base: . is then the altitude of .. The volume of a polyhedral region can be reckoned in a similar way, but for that it is necessary
53#
發(fā)表于 2025-3-30 18:31:49 | 只看該作者
(1924). This is its first translation. Its best-known result is often called the .: any two balls with different radii can be decomposed into the same finite number of disjoint, respectively congruent parts.
54#
發(fā)表于 2025-3-31 00:00:00 | 只看該作者
55#
發(fā)表于 2025-3-31 00:55:29 | 只看該作者
56#
發(fā)表于 2025-3-31 06:02:42 | 只看該作者
Career and Family background for that activity, and for all of Tarski’s publications that stemmed from it. The first of those is translated in chapter 10: his [1929] 2014a report to secondary teachers about the First Congress of Mathematicians of Slavic Countries, held in 1929 in Warsaw.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
银川市| 焦作市| 衡山县| 呼伦贝尔市| 鞍山市| 冀州市| 阳春市| 枣阳市| 远安县| 余干县| 大理市| 台东市| 剑河县| 定陶县| 肇州县| 宁夏| 伊宁县| 武强县| 自治县| 新乡市| 青冈县| 谢通门县| 犍为县| 舒城县| 南华县| 瑞安市| 姚安县| 富阳市| 绥中县| 芒康县| 临漳县| 阿巴嘎旗| 连城县| 华阴市| 弥渡县| 成安县| 全椒县| 武陟县| 邓州市| 大兴区| 来宾市|