找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Alfred Tarski; Early Work in Poland Andrew McFarland,Joanna McFarland,James T. Smith Book 2014 Springer Science+Business Media New York 201

[復制鏈接]
查看: 46003|回復: 55
樓主
發(fā)表于 2025-3-21 17:07:52 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Alfred Tarski
期刊簡稱Early Work in Poland
影響因子2023Andrew McFarland,Joanna McFarland,James T. Smith
視頻videohttp://file.papertrans.cn/153/152381/152381.mp4
發(fā)行地址Evaluates and reflects upon Alfred Taski‘s early writings.Unique compilation of papers from Alfred Tarki‘s early years as a mathematician and logician.Contains material which has previously been inacc
圖書封面Titlebook: Alfred Tarski; Early Work in Poland Andrew McFarland,Joanna McFarland,James T. Smith Book 2014 Springer Science+Business Media New York 201
影響因子.Alfred Tarski (1901–1983) was a renowned Polish/American mathematician, a giant of the twentieth century, who helped establish the foundations of geometry, set theory, model theory, algebraic logic and universal algebra. Throughout his career, he taught mathematics and logic at universities and sometimes in secondary schools. Many of his writings before 1939 were in Polish and remained inaccessible to most mathematicians and historians until now..This self-contained book focuses on Tarski’s early contributions to geometry and mathematics education, including the famous Banach–Tarski paradoxical decomposition of a sphere as well as high-school mathematical topics and pedagogy. These themes are significant since Tarski’s later research on geometry and its foundations stemmed in part from his early employment as a high-school mathematics teacher and teacher-trainer. The book contains careful translations and much newly uncovered social background of these works written during Tarski’s years in Poland..Alfred Tarski: Early Work in Poland .serves the mathematical, educational, philosophical and historical communities by publishing Tarski’s early writings in a broadly accessible form, p
Pindex Book 2014
The information of publication is updating

書目名稱Alfred Tarski影響因子(影響力)




書目名稱Alfred Tarski影響因子(影響力)學科排名




書目名稱Alfred Tarski網(wǎng)絡(luò)公開度




書目名稱Alfred Tarski網(wǎng)絡(luò)公開度學科排名




書目名稱Alfred Tarski被引頻次




書目名稱Alfred Tarski被引頻次學科排名




書目名稱Alfred Tarski年度引用




書目名稱Alfred Tarski年度引用學科排名




書目名稱Alfred Tarski讀者反饋




書目名稱Alfred Tarski讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:17 | 只看該作者
Book 2014ul translations and much newly uncovered social background of these works written during Tarski’s years in Poland..Alfred Tarski: Early Work in Poland .serves the mathematical, educational, philosophical and historical communities by publishing Tarski’s early writings in a broadly accessible form, p
板凳
發(fā)表于 2025-3-22 01:35:08 | 只看該作者
d logician.Contains material which has previously been inacc.Alfred Tarski (1901–1983) was a renowned Polish/American mathematician, a giant of the twentieth century, who helped establish the foundations of geometry, set theory, model theory, algebraic logic and universal algebra. Throughout his car
地板
發(fā)表于 2025-3-22 08:27:59 | 只看該作者
5#
發(fā)表于 2025-3-22 08:51:10 | 只看該作者
6#
發(fā)表于 2025-3-22 14:49:55 | 只看該作者
Lecture Notes in Computer Scienceerwien theorem: polygonal regions are equivalent if and only if they have the same area. The 1924 papers of Alfred Tarski and Stefan Banach, translated in chapters 5 and 6, extended that theory to include analogous results with a different, set-theoretic, definition of equivalence.
7#
發(fā)表于 2025-3-22 18:56:47 | 只看該作者
8#
發(fā)表于 2025-3-23 01:01:47 | 只看該作者
9#
發(fā)表于 2025-3-23 01:42:03 | 只看該作者
10#
發(fā)表于 2025-3-23 09:32:29 | 只看該作者
Area, Volume, Measureangle . with unit base: . is then the altitude of .. The volume of a polyhedral region can be reckoned in a similar way, but for that it is necessary to use some form of Eudoxus’s method of exhaustion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新建县| 晋州市| 武汉市| 宁陵县| 稷山县| 平顶山市| 罗甸县| 南开区| 黄浦区| 西华县| 镇安县| 安康市| 互助| 安乡县| 广饶县| 赣州市| 葫芦岛市| 潢川县| 内丘县| 松桃| 塔河县| 嘉峪关市| 克拉玛依市| 高青县| 固原市| 尤溪县| 高雄县| 金山区| 古丈县| 天津市| 修武县| 石林| 青岛市| 仪陇县| 乌恰县| 定边县| 犍为县| 宜章县| 南城县| 登封市| 田阳县|