找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Aggregation in Large-Scale Optimization; Igor Litvinchev,Vladimir Tsurkov Book 2003 Springer Science+Business Media Dordrecht 2003 Optimal

[復(fù)制鏈接]
樓主: bile-acids
11#
發(fā)表于 2025-3-23 12:29:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:17:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:34:54 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:15 | 只看該作者
15#
發(fā)表于 2025-3-24 06:07:35 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:15:06 | 只看該作者
Consistent Aggregation in Parametric Optimization,s is the case when parameters vary over a given set, and optimization should be performed not only with respect to the original decision variables but also with respect to the parameters. The situation becomes even more complicated when the set of admissible parameters is corrected in the course of optimization.
18#
發(fā)表于 2025-3-24 16:58:14 | 只看該作者
Aggregated Problem and Bounds for Aggregation,aggregated) problems which are reduced in size and/or complexity relative to the original problem, and c) analyzing the error caused by the replacement of the original problem by a simpler one. In this chapter, we consider realizations of these steps for various classes of optimization problems. The
19#
發(fā)表于 2025-3-24 22:51:17 | 只看該作者
Iterative Aggregation-Decomposition in Optimization Problems,uch as weights and clustering, were fixed. In this chapter we focus on iterative methods aimed to construct a sequence of aggregated problems and update aggregation parameters to get an optimal solution of the original problem.
20#
發(fā)表于 2025-3-25 02:14:09 | 只看該作者
Consistent Aggregation in Parametric Optimization,s is the case when parameters vary over a given set, and optimization should be performed not only with respect to the original decision variables but also with respect to the parameters. The situation becomes even more complicated when the set of admissible parameters is corrected in the course of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜江市| 大渡口区| 柞水县| 秭归县| 泽普县| 朝阳市| 东海县| 奉贤区| 濉溪县| 阳城县| 湟中县| 桦川县| 清水县| 临沂市| 天镇县| 庆城县| 卢氏县| 通江县| 桓仁| 玛沁县| 建阳市| 龙门县| 日喀则市| 遵义市| 大余县| 江孜县| 天津市| 奇台县| 缙云县| 乌恰县| 布尔津县| 井冈山市| 惠来县| 宣威市| 吴江市| 芜湖市| 芒康县| 两当县| 南京市| 瑞昌市| 神农架林区|