找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Agents and Data Mining Interaction; 10th International W Longbing Cao,Yifeng Zeng,Philip S. Yu Conference proceedings 2015 Springer Interna

[復(fù)制鏈接]
樓主: BULK
31#
發(fā)表于 2025-3-26 23:03:08 | 只看該作者
A Coupled Similarity Kernel for Pairwise Support Vector Machine,ic is pairwise, we also propose an adapted SVM which can handle this. The experiment result shows the proposed method outperforms the traditional SVM and other popular classification methods on various public data sets.
32#
發(fā)表于 2025-3-27 02:40:33 | 只看該作者
,Learning Agents’ Relations in Interactive Multiagent Dynamic Influence Diagrams, . agents, which as expected increases the solution complexity due to the model space of other agents in the extended I-DIDs. We exploit data of agents’ interactions to discover their relations thereby reducing the model complexity. We show preliminary results of the proposed techniques in one problem domain.
33#
發(fā)表于 2025-3-27 07:20:24 | 只看該作者
34#
發(fā)表于 2025-3-27 11:59:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:02:00 | 只看該作者
0302-9743 clusion in this volume. They present current research and engineering results, as well as potential challenges and prospects encountered in the respective communities and the coupling between agents and data mining..978-3-319-20229-7978-3-319-20230-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 21:35:34 | 只看該作者
Conference proceedings 2015gent Systems..The 11 papers presented were carefully reviewed and selected from numerous submissions for inclusion in this volume. They present current research and engineering results, as well as potential challenges and prospects encountered in the respective communities and the coupling between agents and data mining..
37#
發(fā)表于 2025-3-27 22:18:47 | 只看該作者
https://doi.org/10.1007/978-3-030-77892-7 . agents, which as expected increases the solution complexity due to the model space of other agents in the extended I-DIDs. We exploit data of agents’ interactions to discover their relations thereby reducing the model complexity. We show preliminary results of the proposed techniques in one problem domain.
38#
發(fā)表于 2025-3-28 04:05:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:41 | 只看該作者
40#
發(fā)表于 2025-3-28 12:05:22 | 只看該作者
,Learning Agents’ Relations in Interactive Multiagent Dynamic Influence Diagrams,gents’ perspective, interactive dynamic influence diagrams?(I-DIDs) provide a general framework for sequential multiagent decision making in uncertain settings. Most of the current I-DID research focuses on the setting of . agents, which limits its general applications. This paper extends I-DIDs for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平阴县| 汝南县| 福贡县| 巴彦县| 肇州县| 万州区| 石棉县| 营山县| 浦江县| 寿宁县| 鄄城县| 长沙市| 固镇县| 丰城市| 安远县| 南城县| 大港区| 六安市| 宁都县| 南投县| 榆中县| 乃东县| 临江市| 三门县| 页游| 安西县| 德格县| 安义县| 屯昌县| 天镇县| 鹤庆县| 银川市| 台安县| 额敏县| 驻马店市| 仁布县| 黑山县| 扶余县| 孝昌县| 桂东县| 定陶县|