找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Age-Structured Population Dynamics in Demography and Epidemiology; Hisashi Inaba Book 2017 Springer Science+Business Media Singapore 2017

[復(fù)制鏈接]
樓主: firearm
21#
發(fā)表于 2025-3-25 03:35:16 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:03 | 只看該作者
23#
發(fā)表于 2025-3-25 15:12:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:26:13 | 只看該作者
Classical Limits and Critical Propertiesonlinear demographic theory. Temporary or persistent pair formation also plays an important role in understanding the spread of sexually transmitted diseases, so there are a number of studies about pair formation phenomena in the context of epidemic models. In this chapter, however, we focus on pure
25#
發(fā)表于 2025-3-25 21:59:28 | 只看該作者
Critical Phenomena in 3 DimensionsKermack and McKendrick, although there are slightly different definition for the final size. We then extend the original model to account for the heterogeneity of individuals and derive the pandemic threshold theorem. Subsequently, we introduce the demography of the host population and prove the end
26#
發(fā)表于 2025-3-26 01:36:16 | 只看該作者
27#
發(fā)表于 2025-3-26 07:57:05 | 只看該作者
Semi-infinite critical systems,sic properties. The potential importance of the Kermack–McKendrick reinfection model is that it can take into account variable susceptibility and reinfection, and will thus be a useful starting point in considering the epidemiological life history of individuals. The Pease influenza model can be see
28#
發(fā)表于 2025-3-26 11:56:43 | 只看該作者
Springer Tracts in Modern Physicsr has been developed as a central tenet of both infectious disease epidemiology and general population dynamics. Recently, this basic idea has evolved considerably to allow its application to time-heterogeneous environments. In this chapter, we sketch a general theory of .. First, we formulate a gen
29#
發(fā)表于 2025-3-26 14:12:21 | 只看該作者
Age-Structured Population Dynamics in Demography and Epidemiology
30#
發(fā)表于 2025-3-26 19:01:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连平县| 广宗县| 木兰县| 恩平市| 于都县| 宾川县| 龙川县| 赣榆县| 满城县| 洛隆县| 高密市| 凌海市| 湘潭市| 通州区| 瑞丽市| 柳林县| 正安县| 翁牛特旗| 临安市| 朝阳县| 兴海县| 曲阜市| 枞阳县| 疏附县| 南召县| 大足县| 肃北| 泰兴市| 威远县| 庄河市| 筠连县| 天等县| 靖边县| 肥乡县| 潢川县| 龙岩市| 巴中市| 衡阳县| 全南县| 怀宁县| 彰武县|