找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Affine Maps, Euclidean Motions and Quadrics; Agustí Reventós Tarrida Textbook 2011 Springer-Verlag London Limited 2011 affine geometry.bil

[復(fù)制鏈接]
樓主: Fibromyalgia
11#
發(fā)表于 2025-3-23 09:44:27 | 只看該作者
Eco-Efficiency in Industry and ScienceIn this chapter we study Euclidean motions in dimension 1, 2 and?3. For instance, in dimension three there are only three types of Euclidean motions: . (that include rotations, translations and the identity), . (that include mirror symmetries) and ...The subsections are
12#
發(fā)表于 2025-3-23 16:28:20 | 只看該作者
Euclidean Affine Spaces,In this chapter we consider affine spaces on which a distance has been defined. Thus we have a model of classical Euclidean Geometry, where, for instance, Pythagoras’ Theorem works well. We give a short method to compute the distance between two varieties of arbitrary dimension..The subsections are
13#
發(fā)表于 2025-3-23 18:11:31 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:44 | 只看該作者
Agustí Reventós TarridaThorough treatment of affine geometry and quadrics.A useful resource for lecturers in linear algebra and geometry.Provides an high level of detail and generality that is unmatched by other texts avail
15#
發(fā)表于 2025-3-24 06:10:10 | 只看該作者
16#
發(fā)表于 2025-3-24 08:11:29 | 只看該作者
17#
發(fā)表于 2025-3-24 14:30:26 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:17 | 只看該作者
19#
發(fā)表于 2025-3-24 20:08:41 | 只看該作者
20#
發(fā)表于 2025-3-24 23:58:35 | 只看該作者
J?rg E. U. Schmidt,Claus-Heinrich Daubind it in specialist literature. We prove essentially the same result that in the above chapter: Two affine maps are similar if and only if the corresponding linear part are similar and the corresponding invariance level are equal..The subsections are
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长海县| 于都县| 开阳县| 色达县| 托克逊县| 屏南县| 泰兴市| 西城区| 阿坝| 葫芦岛市| 张掖市| 元阳县| 塔河县| 阿合奇县| 莱西市| 多伦县| 云阳县| 陈巴尔虎旗| 淮北市| 水富县| 五原县| 丽江市| 金堂县| 沅陵县| 图们市| 乐东| 阿克陶县| 奈曼旗| 郸城县| 丹江口市| 皋兰县| 平乡县| 磐安县| 邵阳市| 全州县| 芦溪县| 娄烦县| 威海市| 阆中市| 达孜县| 简阳市|