找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Adventures of Mind and Mathematics; Wolff-Michael Roth Book 2020 Springer Nature Switzerland AG 2020 mathematical reasoning.cognitive math

[復(fù)制鏈接]
樓主: 譴責(zé)
11#
發(fā)表于 2025-3-23 09:51:58 | 只看該作者
On Signifier Things and Signing-as-Eventfronted with signifier–signs for which they have to construct meaning. Here, the signifier–sign is treated as if it could exist outside of its relations to the things signified. Long ago, such an approach to the question of the signifier–sign has been subject to severe critique from pragmatist philosophers, who suggest that
12#
發(fā)表于 2025-3-23 15:46:23 | 只看該作者
13#
發(fā)表于 2025-3-23 18:05:33 | 只看該作者
2522-5405 and enactivist approaches.Provides an alternative to common This monograph uses the concept and category of “event” in the study of mathematics as it emerges from an interaction between levels of cognition, from the bodily experiences to symbolism. It?is subdivided into three parts.The first moves f
14#
發(fā)表于 2025-3-24 01:39:14 | 只看該作者
Book 2020m the bodily experiences to symbolism. It?is subdivided into three parts.The first moves from a general characterization of the classical approach to mathematical cognition and mind toward laying the foundations for a view on the mathematical mind that differs from going approaches in placing primac
15#
發(fā)表于 2025-3-24 05:08:25 | 只看該作者
16#
發(fā)表于 2025-3-24 09:07:40 | 只看該作者
17#
發(fā)表于 2025-3-24 14:32:04 | 只看該作者
Mathematical Thinking as Eventin the all-pervasive cinematographic take, movement does not return to life by animating still images from the outside (Bergson 1908). The move from thought-things to thinking-as-event is not easy because, as the opening quotation points out, what is to be thought—thinking—withdraws itself. Thought
18#
發(fā)表于 2025-3-24 15:37:36 | 只看該作者
When Does Mathematical Form Make Sense?al occurrences. Instead, there is continued passage from word to word to word, and in most conversations, speakers are not concerned with the word itself but appear to be transported to and become part of the continuously evolving content. Theories focusing on entitative meanings that go with substa
19#
發(fā)表于 2025-3-24 21:53:18 | 只看該作者
20#
發(fā)表于 2025-3-25 00:48:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆良县| 三门峡市| 华阴市| 伊春市| 天水市| 九龙坡区| 四平市| 信宜市| 甘孜县| 乌恰县| 沈阳市| 寿阳县| 西乌珠穆沁旗| 乐陵市| 来凤县| 凤凰县| 蒙山县| 察哈| 临沧市| 桂林市| 浮梁县| 五常市| 青川县| 四子王旗| 福州市| 杭锦后旗| 南靖县| 图木舒克市| 财经| 曲靖市| 正阳县| 太白县| 仁寿县| 蒙阴县| 怀化市| 黄大仙区| 东明县| 五华县| 泽州县| 集贤县| 山东省|