找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances on Theory and Practice of Robots and Manipulators; Proceedings of Roman Marco Ceccarelli,Victor A. Glazunov Conference proceedings

[復制鏈接]
樓主: invigorating
21#
發(fā)表于 2025-3-25 03:49:58 | 只看該作者
22#
發(fā)表于 2025-3-25 07:49:44 | 只看該作者
Ro. Man. Sy.: Its Beginnings and Its Founders,This paper describes the origins of the ROMANSY series of symposia. It recounts the author’s experience as one of the original founders. The emphasis is on the events leading to the first organizational meetings and the people involved in organizing the early symposia.
23#
發(fā)表于 2025-3-25 14:51:18 | 只看該作者
Singularity Analysis of 3-DOF Translational Parallel Manipulator,In this paper we analyze singularities of the 3-DOF translational parallel mechanism with three kinematic chains, each consisting of five revolute joints. Both Jacobian and Screw theory methods are used to determine singular points of different types. Constraint singularity is also studied.
24#
發(fā)表于 2025-3-25 16:39:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:00 | 只看該作者
26#
發(fā)表于 2025-3-26 03:38:10 | 只看該作者
27#
發(fā)表于 2025-3-26 07:35:46 | 只看該作者
On the Perturbation of Jacobian Matrix of Manipulators,urbed and interval forms of Jacobian matrix. The differential of Jacobian inverse and the resultant differential joint inputs are considered. Reported example parallel manipulators show the implementation of methods and the validity of distinct errors compared to uncertainties set as interval.
28#
發(fā)表于 2025-3-26 12:30:24 | 只看該作者
Design and Optimization of a Tripod-Based Hybrid Manipulator,this new type of manipulator, the kinematic and Jacobian matrix of this manipulator are first analyzed, then the kinematic performances which include stiffness/compliance and workspace are analyzed and optimized, and the multi-objective optimization on the compliance and workspace is subsequently conducted.
29#
發(fā)表于 2025-3-26 14:22:17 | 只看該作者
Marco Ceccarelli,Victor A. GlazunovROMANSY is the first conference on Robotics with a continuous tradition of regular events from 1973 onwards.Papers are related to last achievements in the fields of Robot Design, Dynamics and Control.
30#
發(fā)表于 2025-3-26 18:53:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
石家庄市| 吉安县| 自贡市| 且末县| 湟源县| 吉首市| 澎湖县| 汝城县| 根河市| 乐陵市| 徐水县| 成都市| 淮北市| 双峰县| 时尚| 延吉市| 西安市| 修水县| 乡宁县| 济阳县| 陇川县| 湘西| 达尔| 合作市| 宜兰县| 鹤岗市| 东阿县| 台南县| 宜宾市| 时尚| 凤庆县| 正定县| 鸡泽县| 乌拉特后旗| 贵溪市| 绥宁县| 云阳县| 兰州市| 兴和县| 图木舒克市| 孟州市|