找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances on Intelligent Informatics and Computing; Health Informatics, Faisal Saeed,Fathey Mohammed,Fuad Ghaleb Conference proceedings 202

[復(fù)制鏈接]
樓主: deduce
31#
發(fā)表于 2025-3-26 22:03:28 | 只看該作者
Kuheli Roy Barman,Srimanta Baishyach on how ships could be detected. Based on the result, Random Forest outperforms other models in terms of accuracy, scoring 97.20% for RGB and 98.90% for HSV, in comparison with Decision Tree and Naive Bayes those are scored 96.82% for RGB and 97.18% for HSV and 92.43 for RGB and 96.30% for HSV res
32#
發(fā)表于 2025-3-27 03:46:23 | 只看該作者
Contemporary Trends in Semiconductor Devices The developed convolution neural network model (AlexNet CNN), the Random Forest (RF), and the support vector machine (SVM) techniques were contrasted in the species classifications. The highest degree of accuracy achieved was 98.2% by using the developed CNN model.
33#
發(fā)表于 2025-3-27 07:10:20 | 只看該作者
34#
發(fā)表于 2025-3-27 12:20:18 | 只看該作者
35#
發(fā)表于 2025-3-27 13:38:10 | 只看該作者
,“To Make Mosques a Place for Women”,milarity measures to quantify the magnitude of concept drift in data streams, to improve the classification performance. Series of the experiments were conducted on the real-world datasets and the results demonstrated the efficiency of our proposed model.
36#
發(fā)表于 2025-3-27 17:56:03 | 只看該作者
37#
發(fā)表于 2025-3-27 23:18:13 | 只看該作者
https://doi.org/10.1057/9780230609266timeframe data set. As the FAGM (1,.) model focuses on the prioritization of newer information, the proposed model will be able to forecast the . emissions better compared to the GM (1,.) model even with a small sample size data.
38#
發(fā)表于 2025-3-28 03:32:08 | 只看該作者
Lyn Di Iorio Sandín,Richard Perezperformance are English text, DNA, and protein. In number of attempts evaluation, for DNA, English, and protein text datasets, the improvement of the hybrid algorithm was 18%, 50%, and 50% in comparison to Berry-Ravindran algorithm and it was 71%, 74%, and 70% in comparison to Raita algorithm. The r
39#
發(fā)表于 2025-3-28 08:16:45 | 只看該作者
40#
發(fā)表于 2025-3-28 11:24:20 | 只看該作者
https://doi.org/10.1057/9780230609266uctures into another two categories, and 3) class-specific models to recognize the Arabic word from the given image. We introduce benchmark experimental results of our method against previous methods on the Arabic Handwriting Database for Text Recognition. Our method outperforms the baseline methods
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 汤原县| 开鲁县| 屏南县| 永登县| 洱源县| 满洲里市| 岳西县| 温泉县| 通海县| 永福县| 湛江市| 进贤县| 乐业县| 泉州市| 启东市| 诸暨市| 海原县| 乐山市| 舟山市| 开平市| 筠连县| 大安市| 昭通市| 玛曲县| 依安县| 阳春市| 台东县| 东海县| 林甸县| 抚松县| 阜新| 库车县| 阜南县| 宜城市| 兴仁县| 玛多县| 邢台市| 景宁| 定日县| 门源|