找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances on Fractional Inequalities; George A. Anastassiou Book 2011 George A. Anastassiou 2011 Caputo fractional derivative.Fractional Ca

[復(fù)制鏈接]
查看: 39731|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:56:14 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances on Fractional Inequalities
影響因子2023George A. Anastassiou
視頻videohttp://file.papertrans.cn/151/150303/150303.mp4
發(fā)行地址Use primarily the Caputo fractional derivative, as the most important in applications, and we present first fractional differentiation inequalities of Opial type where we involve the so called balance
學(xué)科分類SpringerBriefs in Mathematics
圖書封面Titlebook: Advances on Fractional Inequalities;  George A. Anastassiou Book 2011 George A. Anastassiou 2011 Caputo fractional derivative.Fractional Ca
影響因子.Advances on Fractional Inequalities ?use primarily the Caputo fractional derivative, as the most important in applications, and presents the first fractional differentiation inequalities of Opial type which ?involves the balanced fractional derivatives. The book continues with right and mixed fractional differentiation Ostrowski inequalities in the univariate and multivariate cases. Next the right and left, as well as mixed, Landau fractional differentiation inequalities in the univariate and multivariate cases are illustrated. Throughout the book many applications are given. .Fractional differentiation inequalities are by themselves an important and great mathematical topic for research. Furthermore they have many applications, the most important ones are in establishing uniqueness of solution in fractional differential equations and systems and in fractional partial differential equations. Also they provide upper bounds to the solutions of the above equations..Fractional Calculus has emerged as very useful over the last forty years due to its many applications in almost all applied sciences. This is currently seen in applications in acoustic wave propagation in inhomogeneous por
Pindex Book 2011
The information of publication is updating

書目名稱Advances on Fractional Inequalities影響因子(影響力)




書目名稱Advances on Fractional Inequalities影響因子(影響力)學(xué)科排名




書目名稱Advances on Fractional Inequalities網(wǎng)絡(luò)公開度




書目名稱Advances on Fractional Inequalities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances on Fractional Inequalities被引頻次




書目名稱Advances on Fractional Inequalities被引頻次學(xué)科排名




書目名稱Advances on Fractional Inequalities年度引用




書目名稱Advances on Fractional Inequalities年度引用學(xué)科排名




書目名稱Advances on Fractional Inequalities讀者反饋




書目名稱Advances on Fractional Inequalities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:51 | 只看該作者
Book 2011actional differentiation inequalities of Opial type which ?involves the balanced fractional derivatives. The book continues with right and mixed fractional differentiation Ostrowski inequalities in the univariate and multivariate cases. Next the right and left, as well as mixed, Landau fractional di
板凳
發(fā)表于 2025-3-22 02:15:01 | 只看該作者
2191-8198 alculus has emerged as very useful over the last forty years due to its many applications in almost all applied sciences. This is currently seen in applications in acoustic wave propagation in inhomogeneous por978-1-4614-0702-7978-1-4614-0703-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
地板
發(fā)表于 2025-3-22 08:29:00 | 只看該作者
Opial-Type Inequalities for Balanced Fractional Derivatives,
5#
發(fā)表于 2025-3-22 11:00:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:44:16 | 只看該作者
7#
發(fā)表于 2025-3-22 18:38:59 | 只看該作者
8#
發(fā)表于 2025-3-23 00:32:31 | 只看該作者
Multivariate Radial Mixed Fractional Ostrowski Inequalities,
9#
發(fā)表于 2025-3-23 02:02:04 | 只看該作者
Shell Mixed Caputo Fractional Ostrowski Inequalities,
10#
發(fā)表于 2025-3-23 07:16:21 | 只看該作者
Left Caputo Fractional Uniform Landau Inequalities,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广丰县| 绍兴市| 博乐市| 翁牛特旗| 砀山县| 崇明县| 大渡口区| 桃江县| 石楼县| 偏关县| 儋州市| 九寨沟县| 甘泉县| 年辖:市辖区| 墨玉县| 安化县| 青田县| 蓝山县| 厦门市| 北京市| 丹寨县| 十堰市| 绍兴市| 重庆市| 朝阳县| 建始县| 建德市| 华宁县| 绥棱县| 玛纳斯县| 湖口县| 岫岩| 即墨市| 贡觉县| 游戏| 阳春市| 汉源县| 永川市| 湛江市| 沁阳市| 抚州市|