找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in the Theory of System Decoupling; Rubens Gon?alves Salsa Junior,Fai Ma Book 2021 Springer Nature Switzerland AG 2021 Linear sys

[復(fù)制鏈接]
樓主: lutein
11#
發(fā)表于 2025-3-23 11:04:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:08:57 | 只看該作者
Linear Systems and Configuration-Space Decoupling Techniquesupling techniques. Coordinate decoupling is the process of simultaneously diagonalizing the coefficient matrices of a dynamical system. The main objective of this chapter is to provide an overview of configuration-space decoupling techniques. Three decoupling algorithms are provided and eleven examples are supplemented.
13#
發(fā)表于 2025-3-23 18:03:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:33:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:20:05 | 只看該作者
César Fernández-de-las-Pe?as,Kimberly Bensenystem. This process of decoupling the equation of motion of a dynamical system is the time-honored procedure termed modal analysis. In general, damping is not classical and thus passive linear systems cannot be decoupled by modal analysis. This chapter shows how classical modal analysis can be exten
17#
發(fā)表于 2025-3-24 14:03:17 | 只看該作者
18#
發(fā)表于 2025-3-24 17:24:27 | 只看該作者
19#
發(fā)表于 2025-3-24 22:38:30 | 只看該作者
Decoupling of Linear Systems by Phase Synchronizationositive-definiteness. Systems possessing distinct, repeated, or defective eigenvalues are addressed. An algorithm for decoupling via phase synchronization is provided. Seven examples are supplied for illustration.
20#
發(fā)表于 2025-3-24 23:51:37 | 只看該作者
Selected Applicationsons include: computation of invariant of motion, derivation of a canonical form of the equation of motion, characterization of oscillatory behavior in free vibration and modal reduction of a system under base excitation. Several illustrative examples are supplied for theoretical developments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤岗市| 合江县| 土默特右旗| 铁岭县| 正蓝旗| 仁化县| 永德县| 固原市| 新巴尔虎左旗| 拉萨市| 杭州市| 平潭县| 上饶市| 绥棱县| 铜山县| 北辰区| 苍溪县| 铜山县| 湛江市| 徐水县| 攀枝花市| 兖州市| 齐齐哈尔市| 和平县| 建阳市| 剑川县| 衢州市| 柳州市| 秀山| 平和县| 马山县| 邵东县| 宜良县| 石泉县| 丰宁| 康保县| 防城港市| 五指山市| 上栗县| 广元市| 大悟县|