找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Visual Computing; 15th International S George Bebis,Zhaozheng Yin,George Baciu Conference proceedings 2020 Springer Nature Swit

[復(fù)制鏈接]
樓主: incompatible
41#
發(fā)表于 2025-3-28 15:46:06 | 只看該作者
42#
發(fā)表于 2025-3-28 21:20:30 | 只看該作者
43#
發(fā)表于 2025-3-29 02:23:55 | 只看該作者
rcGAN: Learning a Generative Model for Arbitrary Size Image Generationage used to train our model. Our two-steps method uses a randomly conditioned convolutional generative adversarial network (rcGAN) trained on patches obtained from a reference image. It can capture the reference image internal patches distribution and then produce high-quality samples that share wit
44#
發(fā)表于 2025-3-29 04:31:54 | 只看該作者
Sketch-Inspector: A Deep Mixture Model for High-Quality Sketch Generation of Catsen made in previous studies in this area, a relatively high proportion of the generated figures are too abstract to recognize, which illustrates that AIs fail to learn the general pattern of the target object when drawing. This paper posits that supervising the process of stroke generation can lead
45#
發(fā)表于 2025-3-29 10:37:04 | 只看該作者
Depthwise Separable Convolutions and Variational Dropout within the context of YOLOv3n solutions. However, these algorithms often impose prohibitive levels of memory and computational overhead, especially in resource-constrained environments. In this study, we combine the state-of-the-art object-detection model YOLOv3 with depthwise separable convolutions and variational dropout in
46#
發(fā)表于 2025-3-29 13:58:09 | 只看該作者
Uncertainty Estimates in Deep Generative Models Using Gaussian Processesliability of the outcome of machine learning systems. Gaussian processes are widely known as a method in machine learning which provides estimates of uncertainty. Moreover, Gaussian processes have been shown to be equivalent to deep neural networks with infinitely wide layers. This equivalence sugge
47#
發(fā)表于 2025-3-29 17:54:29 | 只看該作者
Towards Optimal Ship Navigation Using Image Processing Plotting Aid (ARPA) and Electronic Chart Display and Information System (ECDIS). Location map, marine traffic, geographical conditions, and obstacles in a region can be monitored by these technologies. The obstacles may vary from icebergs and ice blocks to islands, debris, rocks, or other vessels i
48#
發(fā)表于 2025-3-29 20:09:17 | 只看該作者
49#
發(fā)表于 2025-3-30 03:51:24 | 只看該作者
Pixel-Level Corrosion Detection on Metal Constructions by Fusion of Deep Learning Semantic and Conto approaches tend to place bounding boxes around the defected region which is not adequate both for structural analysis and prefabrication, an innovative construction concept which reduces maintenance cost, time and improves safety. In this paper, we apply three semantic segmentation-oriented deep le
50#
發(fā)表于 2025-3-30 05:40:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大安市| 威海市| 乌兰县| 延吉市| 武城县| 平远县| 渭南市| 米林县| 湖南省| 柳河县| 内乡县| 旌德县| 遵义县| 松阳县| 三江| 图木舒克市| 定西市| 许昌县| 鄯善县| 广丰县| 西华县| 南阳市| 尤溪县| 永顺县| 漯河市| 莱州市| 达日县| 和田市| 尚义县| 三穗县| 龙陵县| 天津市| 高陵县| 靖西县| 琼结县| 汕尾市| 衡阳县| 平武县| 麦盖提县| 手游| 忻州市|