找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Topology and Their Interdisciplinary Applications; Santanu Acharjee Book 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Definite
31#
發(fā)表于 2025-3-27 00:05:11 | 只看該作者
,Filter Versus Ideal on?Topological Spaces,op a secret information-sharing scheme in?topological cryptography. This new secret-sharing scheme is developed for secret information sharing between two military groups to conduct joint operations on a certain day.
32#
發(fā)表于 2025-3-27 01:54:10 | 只看該作者
33#
發(fā)表于 2025-3-27 06:10:42 | 只看該作者
,Topological Approaches for?Vector Variational Inequality Problems,ty and lower semi-continuity, respectively. Admissibility of function space topology and convergence of net of sets are used as major tools towards achieving this goal. Topological properties of the solution sets of VVI and GVVI problems are also discussed.
34#
發(fā)表于 2025-3-27 11:44:58 | 只看該作者
35#
發(fā)表于 2025-3-27 13:46:41 | 只看該作者
,Topological Aspects of?Granular Computing,h crisp sets, to work in granular computing and thus, we restrict ourselves only to crisp set-based granular computing. At last, we discuss some feasible ideas from biology and microscopy, which may inspire the experts of granular computing to develop new theories based on crisp sets and realities of nature.
36#
發(fā)表于 2025-3-27 20:37:04 | 只看該作者
37#
發(fā)表于 2025-3-27 22:52:19 | 只看該作者
38#
發(fā)表于 2025-3-28 05:17:52 | 只看該作者
,On Quasi-uniformities, Function Spaces and?Atoms: Remarks and?Some Questions,with respect to the well-known exponential laws. These quasi-uniformities will not necessarily be atoms, thus we state the following problem: how can one define a correspondence between the atoms of the lattice of quasi-uniformities, and those atoms that are in the lattice of all quasi-uniformities on ., in the function space .?
39#
發(fā)表于 2025-3-28 08:30:10 | 只看該作者
40#
發(fā)表于 2025-3-28 14:02:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖西县| 夹江县| 刚察县| 慈利县| 昌邑市| 洞头县| 漳浦县| 梅河口市| 海城市| 上饶县| 平定县| 措美县| 汉寿县| 天水市| 浦县| 九江市| 梨树县| 博罗县| 彩票| 广丰县| 五华县| 垫江县| 宁波市| 绵阳市| 宝丰县| 清原| 巴青县| 临邑县| 开远市| 建德市| 祁门县| 钟山县| 黄冈市| 东乡族自治县| 安徽省| 通海县| 四子王旗| 遵义市| 新竹市| 上饶市| 奈曼旗|