找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 Springer-Verlag Berlin Hei

[復制鏈接]
41#
發(fā)表于 2025-3-28 15:26:25 | 只看該作者
Radial Basis Function Neural Network Based on PSO with Mutation Operation to Solve Function Approximthm. This algorithm combines Particle Swarm Optimization algorithm (PSO) with mutation operation to train RBFNN. PSO with mutation operation and genetic algorithm are respectively used to train weights and spreads of oRBFNN, which is traditional RBFNN with gradient learning in this article. Sum Squa
42#
發(fā)表于 2025-3-28 22:13:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:45:02 | 只看該作者
44#
發(fā)表于 2025-3-29 06:40:43 | 只看該作者
45#
發(fā)表于 2025-3-29 08:32:02 | 只看該作者
46#
發(fā)表于 2025-3-29 15:09:59 | 只看該作者
A System Identification Using DRNN Based on Swarm Intelligenceation during the past decade. In this paper, a learning algorithm for Original Elman neural networks (ENN) based on modified particle swarm optimization (MPSO), which is a swarm intelligent algorithm (SIA), is presented. MPSO and Elman are hybridized to form MPSO-ENN hybrid algorithm as a system ide
47#
發(fā)表于 2025-3-29 15:56:00 | 只看該作者
Force Identification by Using SVM and CPSO Techniqued utilizes a new SVM-CPSO model that hybridized the chaos particle swarm optimization (CPSO) technique and support vector machines (SVM) to tackle the problem of force identification. Both numerical simulations and experimental study are performed to demonstrate the effectiveness, robustness and app
48#
發(fā)表于 2025-3-29 22:41:19 | 只看該作者
49#
發(fā)表于 2025-3-30 02:47:19 | 只看該作者
0302-9743 onstitute the proceedings of the International Conference on Swarm Intelligence (ICSI 2010) held in Beijing, the capital of China, during June 12-15, 2010. ICSI 2010 was the ?rst gathering in the world for researchers working on all aspects of swarm intelligence, and providedan academic forum for th
50#
發(fā)表于 2025-3-30 05:30:57 | 只看該作者
David Beech (Chairman of IFIP WG 2.7)lect parameters of SVR. The proposed approach is used for forecasting logistics demand of Shanghai, The experimental results show that the above method obtained lesser training relative error and testing relative error.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南郑县| 盈江县| 伊宁市| 江北区| 建宁县| 唐海县| 三门县| 鞍山市| 吉木乃县| 邛崃市| 东乌| 万山特区| 石屏县| 平舆县| 巍山| 嘉祥县| 禄丰县| 柏乡县| 揭西县| 峨边| 寿光市| 牟定县| 茂名市| 黄大仙区| 通化市| 秦安县| 吐鲁番市| 界首市| 成武县| 余庆县| 襄垣县| 新河县| 磐石市| 罗田县| 贵溪市| 新巴尔虎左旗| 襄城县| 泸州市| 安丘市| 连云港市| 杭州市|