找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 9th International Co Ying Tan,Yuhui Shi,Qirong Tang Conference proceedings 2018 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: sprawl
41#
發(fā)表于 2025-3-28 18:13:38 | 只看該作者
42#
發(fā)表于 2025-3-28 20:18:19 | 只看該作者
Danny de Jesús Gómez-Ramírez,Alan Smaill by using multi-objective particle swarm optimization. Finally, results are compared with the hydrodynamic calculations. Result shows the efficiency of the method proposed in the paper in the optimal shape design of an underwater robot.
43#
發(fā)表于 2025-3-29 01:14:57 | 只看該作者
Félix Bou,Enric Plaza,Marco SchorlemmerS database and a robot can move accordingly while being able to detect the obstacles and adjust the path. Moreover, the mapping results can be shared among multi-robots to re-localize a robot in the same area without GPS assistance. It has been proved functioning well in the simulation environment of a campus scenario.
44#
發(fā)表于 2025-3-29 03:25:24 | 只看該作者
45#
發(fā)表于 2025-3-29 08:20:47 | 只看該作者
Thomas B. Seiler,Wolfgang Wannenmacherugh the kinematic analysis. Moreover, an inverse kinematics based closed-loop controller is designed to achieve position tracking. Finally, a simulation and an experiment is carried out to validate the workspace and control algorithm respectively. The results show that this robot can follow a given trajectory with satisfactory accuracy.
46#
發(fā)表于 2025-3-29 14:51:52 | 只看該作者
47#
發(fā)表于 2025-3-29 15:52:00 | 只看該作者
48#
發(fā)表于 2025-3-29 22:59:03 | 只看該作者
49#
發(fā)表于 2025-3-30 01:24:19 | 只看該作者
Transaction Flows in Multi-agent Swarm Systemsions is proposed, which allows obtaining a good degree of approximation of an investigated flow to Poisson flow with minimal costs of computing resources. That allows optimizing the information exchange processes between individual units of swarm intelligent systems.
50#
發(fā)表于 2025-3-30 06:24:47 | 只看該作者
Deep Regression Models for Local Interaction in Multi-agent Robot Tasksin the environment along the sensor array, we propose the use of a recurrent neural network. The models are developed for different types of obstacles, free spaces and other robots. The scheme was successfully tested by simulation and on real robots for simple grouping tasks in unknown environments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉峪关市| 建瓯市| 资中县| 龙陵县| 太保市| 仙桃市| 舞阳县| 杭锦旗| 明溪县| 永和县| 万山特区| 玉山县| 天镇县| 上思县| 桦甸市| 永善县| 深水埗区| 平利县| 遂平县| 广水市| 六安市| 丽水市| 松阳县| 民乐县| 神木县| 当阳市| 乐亭县| 清原| 红原县| 安溪县| 普格县| 衡阳市| 洮南市| 将乐县| 清镇市| 大丰市| 宁津县| 甘德县| 宜昌市| 贵定县| 准格尔旗|