找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Summability and Approximation Theory; S. A. Mohiuddine,Tuncer Acar Book 2018 Springer Nature Singapore Pte Ltd. 2018 Statistic

[復(fù)制鏈接]
樓主: Magnanimous
41#
發(fā)表于 2025-3-28 17:27:43 | 只看該作者
,Statistical Deferred Cesàro Summability Mean Based on (,,?,)-Integers with Application to Approximaty mean based on (.,?.)-integers has been introduced and accordingly some basic terminologies are presented. In the second section, we have applied our proposed mean under the difference sequence of order . to prove a Korovkin-type approximation theorem for the set of functions 1, . and . defined on
42#
發(fā)表于 2025-3-28 19:23:32 | 只看該作者
43#
發(fā)表于 2025-3-28 23:58:04 | 只看該作者
ICT productivity and innovations,r values instead of the sampling values of the function. As far as we know, this will be first use of such kind of operators in the theory of interpolation and approximation. Hence, the present study is a generalization and extension of some previous results.
44#
發(fā)表于 2025-3-29 03:58:17 | 只看該作者
45#
發(fā)表于 2025-3-29 09:16:38 | 只看該作者
systems of differential equations in Banach sequence spaces.This book discusses the?Tauberian conditions under which convergence follows from statistical summability, various linear positive operators, Urysohn-type nonlinear Bernstein operators and also presents the use of Banach sequence spaces in
46#
發(fā)表于 2025-3-29 15:06:07 | 只看該作者
47#
發(fā)表于 2025-3-29 19:27:58 | 只看該作者
https://doi.org/10.1007/3-7908-1648-5ity, where . is a regular infinite matrix with non-negative real entries and . is a sequence of matrices of the aforesaid type, in such a way that the new notion covers the famous concept of almost convergence introduced by Lorentz, as well as a new one that merits being called statistical almost convergence.
48#
發(fā)表于 2025-3-29 22:31:00 | 只看該作者
49#
發(fā)表于 2025-3-30 00:45:04 | 只看該作者
50#
發(fā)表于 2025-3-30 07:40:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林省| 革吉县| 成武县| 堆龙德庆县| 中江县| 泰和县| 通化市| 莱州市| 凭祥市| 忻城县| 莱西市| 蚌埠市| 永济市| 拜城县| 新建县| 绥中县| 深水埗区| 重庆市| 达州市| 沈阳市| 甘泉县| 九江市| 大埔区| 五河县| 拉萨市| 宝山区| 昭觉县| 新蔡县| 拜泉县| 禄丰县| 响水县| 长葛市| 额尔古纳市| 银川市| 丹阳市| 旌德县| 淮阳县| 会同县| 同德县| 滦平县| 克什克腾旗|