找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Stochastic and Deterministic Global Optimization; Panos M. Pardalos,Anatoly Zhigljavsky,Julius ?ilin Book 2016 Springer Intern

[復制鏈接]
樓主: Hypothesis
31#
發(fā)表于 2025-3-26 23:43:21 | 只看該作者
https://doi.org/10.1007/978-94-009-1529-9for the master problem. Each column corresponds to one possible tree of actions for one ship giving its schedule loading/unloading quantities for all demand scenarios. Computational results are given showing that medium sized problems can be solved successfully.
32#
發(fā)表于 2025-3-27 03:13:48 | 只看該作者
Jorge Freire Sousa,Riccardo Rossirk we are undertaking using interval methods.In our work a verified solver that constructs upper and lower bounds on the dynamic variables of initial value problem (IVP) for ODEs is used in a dynamic global optimization method (sequential approach). Particular attention is paid to the reduction of t
33#
發(fā)表于 2025-3-27 07:35:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:39:18 | 只看該作者
Christian Liebchen,Rolf H. M?hringWe consider the intrinsic difficulty of global optimization in high dimensional Euclidean space. We adopt an asymptotic analysis, and give a lower bound on the number of function evaluations required to obtain a given error tolerance. This lower bound complements upper bounds provided by recently proposed algorithms.
35#
發(fā)表于 2025-3-27 16:55:59 | 只看該作者
36#
發(fā)表于 2025-3-27 17:46:22 | 只看該作者
37#
發(fā)表于 2025-3-27 23:00:57 | 只看該作者
Mixed-Fleet Ferry Routing and Scheduling, .. Such piecewise convex functions closely approximate nonconvex functions, that seems to us as a natural extension of the piecewise affine approximation from convex analysis. Maximizing .(??) over a convex domain have been investigated during the last decade by carrying tools based mostly on line
38#
發(fā)表于 2025-3-28 05:09:03 | 只看該作者
39#
發(fā)表于 2025-3-28 06:38:32 | 只看該作者
40#
發(fā)表于 2025-3-28 14:02:48 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荃湾区| 洛南县| 博白县| 鲁甸县| 梁河县| 诏安县| 靖远县| 呼玛县| 惠水县| 峨边| 克拉玛依市| 漳州市| 扶沟县| 北碚区| 志丹县| 得荣县| 澄江县| 南川市| 淮滨县| 交口县| 西乌珠穆沁旗| 沛县| 大方县| 固安县| 得荣县| 黄浦区| 海丰县| 涿鹿县| 洪雅县| 沂源县| 昂仁县| 天长市| 遵义市| 中西区| 定安县| 太白县| 荥经县| 盐边县| 拜城县| 合水县| 湘西|