找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Stochastic Simulation Methods; N. Balakrishnan,V. B. Melas,S. Ermakov Book 2000 Springer Science+Business Media New York 2000

[復制鏈接]
樓主: polysomnography
11#
發(fā)表于 2025-3-23 11:20:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:50:59 | 只看該作者
Christopher K. H. Koh,William J. Williamsch is to minimize the maximum integrated mean squared error of the fitted values, subject to an unbiasedness constraint. The maxima are taken over broad classes of departures from the `‘ideal’ model. The methods yield particularly simple treatments of otherwise intractable design problems. This poin
13#
發(fā)表于 2025-3-23 20:56:56 | 只看該作者
Life cycle maintenance management double exponential models and report on the efficiency changes in both types of designs when the nominal values of the parameters are misspecified..Our results show that while .-optimal designs may appear as a more rational criterion, .-optimal designs can be less sensitive to misspecification in t
14#
發(fā)表于 2025-3-23 22:56:28 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:23 | 只看該作者
https://doi.org/10.1007/978-1-4471-1837-4esigns (for . prime or a power of a prime), in the conventional sense of such designs as defined, for example, by Finney (1960, p73) or as displayed in the classic set of NBS tables (., .). Following a standard notation, we refer to these as .. designs, implying a division of the selected fraction i
16#
發(fā)表于 2025-3-24 09:28:09 | 只看該作者
https://doi.org/10.1007/978-1-4471-1837-4lues for . and are therefore . optimal. An exact optimal design can be seen as a choice of . points ..,…, .. out of a set .. Two sets will be considered in this paper: an interval. = .. = [.., ..]and a set. = .. ={..,…, ..}which consists of a finite number of candidate points. If the set .. is used
17#
發(fā)表于 2025-3-24 12:16:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:57:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:07:56 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-31 15:11
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平乡县| 云安县| 大荔县| 深泽县| 友谊县| 余干县| 大安市| 西贡区| 姜堰市| 阳高县| 泽普县| 巴东县| 连平县| 右玉县| 越西县| 札达县| 武平县| 澄江县| 临泉县| 水富县| 穆棱市| 辰溪县| 沙田区| 满城县| 齐河县| 宜兰市| 遵化市| 卓资县| 南通市| 成都市| 阜城县| 黄龙县| 高碑店市| 大安市| 民县| 浮梁县| 醴陵市| 阿克苏市| 昌图县| 花莲市| 黄梅县|