找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Stochastic Simulation Methods; N. Balakrishnan,V. B. Melas,S. Ermakov Book 2000 Springer Science+Business Media New York 2000

[復(fù)制鏈接]
樓主: polysomnography
11#
發(fā)表于 2025-3-23 11:20:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:50:59 | 只看該作者
Christopher K. H. Koh,William J. Williamsch is to minimize the maximum integrated mean squared error of the fitted values, subject to an unbiasedness constraint. The maxima are taken over broad classes of departures from the `‘ideal’ model. The methods yield particularly simple treatments of otherwise intractable design problems. This poin
13#
發(fā)表于 2025-3-23 20:56:56 | 只看該作者
Life cycle maintenance management double exponential models and report on the efficiency changes in both types of designs when the nominal values of the parameters are misspecified..Our results show that while .-optimal designs may appear as a more rational criterion, .-optimal designs can be less sensitive to misspecification in t
14#
發(fā)表于 2025-3-23 22:56:28 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:23 | 只看該作者
https://doi.org/10.1007/978-1-4471-1837-4esigns (for . prime or a power of a prime), in the conventional sense of such designs as defined, for example, by Finney (1960, p73) or as displayed in the classic set of NBS tables (., .). Following a standard notation, we refer to these as .. designs, implying a division of the selected fraction i
16#
發(fā)表于 2025-3-24 09:28:09 | 只看該作者
https://doi.org/10.1007/978-1-4471-1837-4lues for . and are therefore . optimal. An exact optimal design can be seen as a choice of . points ..,…, .. out of a set .. Two sets will be considered in this paper: an interval. = .. = [.., ..]and a set. = .. ={..,…, ..}which consists of a finite number of candidate points. If the set .. is used
17#
發(fā)表于 2025-3-24 12:16:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:57:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:07:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陕西省| 广德县| 韶关市| 昌黎县| 久治县| 临西县| 吕梁市| 萝北县| 蓝田县| 寿光市| 郎溪县| 兴海县| 台东市| 鸡西市| 江都市| 夹江县| 万载县| 武宣县| 大关县| 江门市| 唐海县| 巴中市| 泸西县| 崇左市| 句容市| 武隆县| 望江县| 北辰区| 伊金霍洛旗| 库车县| 沙雅县| 沁源县| 天峨县| 辽中县| 布尔津县| 开化县| 景东| 沙坪坝区| 贵州省| 乌鲁木齐市| 贞丰县|