找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Speech and Language Technologies for Iberian Languages; IberSPEECH 2014 Conf Juan Luis Navarro Mesa,Alfonso Ortega,Doroteo T. T

[復(fù)制鏈接]
樓主: Causalgia
31#
發(fā)表于 2025-3-26 21:00:29 | 只看該作者
Haiyan Hu,Huoguo Zheng,Shihong Liud Total Variability (i-vector) strategies, respectively. Moreover, a simple fusion of the developed approaches and the reference systems has been performed. Some individual and fusion systems outperform the reference systems, obtaining ~ 17% of relative improvement in terms of .. for one of the challenging pairs.
32#
發(fā)表于 2025-3-27 01:15:52 | 只看該作者
Hongxu Wang,FuJin Zhang,Yunsheng Xufor acoustic modeling in a noisy automatic speech recognition environment. Experiments show that DMNs improve substantially the recognition accuracy over DNNs and other traditional techniques in both clean and noisy conditions on the TIMIT dataset.
33#
發(fā)表于 2025-3-27 09:18:07 | 只看該作者
Zhenqi Fan,Chunjing Si,Quanli Yangiques are compared within two different acoustic models: a standard HMM model and the CD-DNN-HMM model. The proposed method obtains improvements on WER of up to 14% relative with respect to a competitive baseline as well as outperforming slide adaptation.
34#
發(fā)表于 2025-3-27 12:18:25 | 只看該作者
35#
發(fā)表于 2025-3-27 16:32:22 | 只看該作者
36#
發(fā)表于 2025-3-27 19:18:30 | 只看該作者
Unsupervised Accent Modeling for Language Identificationing the test, each utterance is evaluated against all of them. The highest score of each language is selected to make decisions. The experiment was carried out on 6 languages of the 2011 NIST LRE dataset. For the 30 s condition, the relative improvement over the baseline was of 11%.
37#
發(fā)表于 2025-3-27 22:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 04:58:12 | 只看該作者
Confidence Measures in Automatic Speech Recognition Systems for Error Detection in Restricted Domainate the reliability of recognition results, discarding low confidence words at the output. These CM can be used as a tool for Unsupervised Learning Techniques, and also for helping human supervision of recognition results. If accurate enough, these CM would increase the usability as well as the robustness of speech applications.
39#
發(fā)表于 2025-3-28 08:54:16 | 只看該作者
Recognition of Distant Voice Commands for Home Applications in Portuguesehow that the strategies based on envelope-variance measure consistently outperformed the remaining methods investigated, and particularly, that channel selection strategies can be more convenient than baseline beamforming methods, such as delay-and-sum, for this type of multi-room scenarios.
40#
發(fā)表于 2025-3-28 13:55:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙泉市| 华容县| 杭锦后旗| 桐梓县| 临江市| 贵南县| 册亨县| 牙克石市| 广安市| 铅山县| 蓝山县| 大邑县| 崇左市| 平昌县| 临沧市| 万州区| 梓潼县| 长寿区| 泰和县| 东至县| 红安县| 德州市| 蓬莱市| 尤溪县| 鸡东县| 额尔古纳市| 镇安县| 南溪县| 平定县| 南华县| 宿州市| 务川| 宁乡县| 沭阳县| 渝中区| 甘德县| 富源县| 怀化市| 仪征市| 天峻县| 温宿县|