找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Speech and Language Technologies for Iberian Languages; IberSPEECH 2014 Conf Juan Luis Navarro Mesa,Alfonso Ortega,Doroteo T. T

[復(fù)制鏈接]
樓主: Causalgia
31#
發(fā)表于 2025-3-26 21:00:29 | 只看該作者
Haiyan Hu,Huoguo Zheng,Shihong Liud Total Variability (i-vector) strategies, respectively. Moreover, a simple fusion of the developed approaches and the reference systems has been performed. Some individual and fusion systems outperform the reference systems, obtaining ~ 17% of relative improvement in terms of .. for one of the challenging pairs.
32#
發(fā)表于 2025-3-27 01:15:52 | 只看該作者
Hongxu Wang,FuJin Zhang,Yunsheng Xufor acoustic modeling in a noisy automatic speech recognition environment. Experiments show that DMNs improve substantially the recognition accuracy over DNNs and other traditional techniques in both clean and noisy conditions on the TIMIT dataset.
33#
發(fā)表于 2025-3-27 09:18:07 | 只看該作者
Zhenqi Fan,Chunjing Si,Quanli Yangiques are compared within two different acoustic models: a standard HMM model and the CD-DNN-HMM model. The proposed method obtains improvements on WER of up to 14% relative with respect to a competitive baseline as well as outperforming slide adaptation.
34#
發(fā)表于 2025-3-27 12:18:25 | 只看該作者
35#
發(fā)表于 2025-3-27 16:32:22 | 只看該作者
36#
發(fā)表于 2025-3-27 19:18:30 | 只看該作者
Unsupervised Accent Modeling for Language Identificationing the test, each utterance is evaluated against all of them. The highest score of each language is selected to make decisions. The experiment was carried out on 6 languages of the 2011 NIST LRE dataset. For the 30 s condition, the relative improvement over the baseline was of 11%.
37#
發(fā)表于 2025-3-27 22:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 04:58:12 | 只看該作者
Confidence Measures in Automatic Speech Recognition Systems for Error Detection in Restricted Domainate the reliability of recognition results, discarding low confidence words at the output. These CM can be used as a tool for Unsupervised Learning Techniques, and also for helping human supervision of recognition results. If accurate enough, these CM would increase the usability as well as the robustness of speech applications.
39#
發(fā)表于 2025-3-28 08:54:16 | 只看該作者
Recognition of Distant Voice Commands for Home Applications in Portuguesehow that the strategies based on envelope-variance measure consistently outperformed the remaining methods investigated, and particularly, that channel selection strategies can be more convenient than baseline beamforming methods, such as delay-and-sum, for this type of multi-room scenarios.
40#
發(fā)表于 2025-3-28 13:55:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大连市| 离岛区| 伊金霍洛旗| 东方市| 沅陵县| 水城县| 宝坻区| 拉孜县| 华容县| 博野县| 仁寿县| 饶河县| 林口县| 开远市| 丽水市| 大竹县| 蛟河市| 武隆县| 旬阳县| 新巴尔虎右旗| 平遥县| 夹江县| 陵川县| 绵阳市| 五指山市| 陕西省| 闵行区| 麻城市| 台南县| 北票市| 南陵县| 获嘉县| 达州市| 乐山市| 长岛县| 雷山县| 平罗县| 大名县| 土默特右旗| 临澧县| 松江区|