找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Social Media Analysis; Mohamed Medhat Gaber,Mihaela Cocea,Ayse Goker Book 2015 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: Taft
21#
發(fā)表于 2025-3-25 06:46:22 | 只看該作者
https://doi.org/10.1007/978-3-319-63504-0s is of essence. However, this approach suffers from the semantic gap between the polarity with which a sentiment-bearing term appears in the text (i.e. contextual polarity) and its prior polarity captured by the lexicon. This is further exacerbated when mining is applied to social media. Here, we p
22#
發(fā)表于 2025-3-25 07:52:08 | 只看該作者
23#
發(fā)表于 2025-3-25 14:33:24 | 只看該作者
https://doi.org/10.1007/978-3-319-63504-0r-supplied emotion labels (emoticons and smilies). Existing word segmentation tools proved unreliable; better accuracy was achieved using character-based features. Higher-order n-grams proved to be useful features. Accuracy varied according to label and emotion: while smilies are used more often, em
24#
發(fā)表于 2025-3-25 18:05:12 | 只看該作者
25#
發(fā)表于 2025-3-25 23:08:02 | 只看該作者
Mining Newsworthy Topics from Social Media,ly discover stories and eye-witness accounts. We present a technique that detects “bursts” of phrases on Twitter that is designed for a real-time topic-detection system. We describe a time-dependent variant of the classic . approach and group?together bursty phrases that often appear in the same mes
26#
發(fā)表于 2025-3-26 01:23:43 | 只看該作者
Sentiment Analysis Using Domain-Adaptation and Sentence-Based Analysis,h of the sentiment. Polarity lexicons that indicate how positive or negative each term is, are often used as the basis of many sentiment analysis approaches. Domain-specific polarity lexicons are expensive and time-consuming to build; hence, researchers often use a general purpose or domain-independ
27#
發(fā)表于 2025-3-26 07:51:14 | 只看該作者
Entity-Based Opinion Mining from Text and Multimedia,nd centred on entity and event recognition. We examine a particular use case, which is to help archivists select material for inclusion in an archive of social media for preserving community memories, moving towards structured preservation around semantic categories. The textual approach we take is
28#
發(fā)表于 2025-3-26 10:49:30 | 只看該作者
29#
發(fā)表于 2025-3-26 15:55:30 | 只看該作者
Case-Studies in Mining User-Generated Reviews for Recommendation,chapter we consider recent work that seeks to extract topics, opinions, and sentiment from review text that is unstructured and often noisy. We describe and evaluate a number of practical case-studies for how such information can be used in an information filtering and recommendation context, from f
30#
發(fā)表于 2025-3-26 18:56:19 | 只看該作者
Predicting Emotion Labels for Chinese Microblog Texts,r-supplied emotion labels (emoticons and smilies). Existing word segmentation tools proved unreliable; better accuracy was achieved using character-based features. Higher-order n-grams proved to be useful features. Accuracy varied according to label and emotion: while smilies are used more often, em
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 12:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大余县| 招远市| 绵阳市| 历史| 巨野县| 汨罗市| 鄂托克旗| 开阳县| 页游| 虞城县| 红桥区| 信宜市| 金溪县| 四川省| 大悟县| 广安市| 湖北省| 本溪市| 武威市| 朝阳市| 丰顺县| 大城县| 乳山市| 庆城县| 喀喇沁旗| 大英县| 涞水县| 明水县| 延川县| 绥滨县| 九江市| 贵定县| 武川县| 太仓市| 肥东县| 平舆县| 利川市| 微山县| 漳浦县| 莆田市| 磐安县|