找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Signal Processing and Intelligent Recognition Systems; 6th International Sy Sabu M. Thampi,Sri Krishnan,Jagadeesh Kannan R. Con

[復制鏈接]
樓主: 年邁
11#
發(fā)表于 2025-3-23 12:59:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:08 | 只看該作者
https://doi.org/10.1007/978-3-031-37706-8ion without manual labor. This has been achieved by feeding the features initially to the unsupervised learning algorithm, i.e., KMeans Clustering algorithm. The classified and misclassified vowels, then became the train and test sets respectively for supervised learning algorithms and a combined re
13#
發(fā)表于 2025-3-23 18:51:09 | 只看該作者
14#
發(fā)表于 2025-3-24 02:12:27 | 只看該作者
Fast Termination and?Workflow Netsand was less effortful for training compared to a Speaker Dependent (SD) recognizer. Testing of the system was conducted with the UA-Speech Database and the combined algorithm produced improvements in recognition accuracy from 43% to 90% for medium to highly impaired speakers revealing its applicabi
15#
發(fā)表于 2025-3-24 06:16:00 | 只看該作者
Monitoring Atomicity in Concurrent Programsodel generates sensible, diverse and personalized recommendations and is effective even on small datasets. We compare our results quantitatively against that of the popular latent factor models for music recommendation and show that our song to vector model outperforms traditional recommendation met
16#
發(fā)表于 2025-3-24 06:58:17 | 只看該作者
Minh-Thai Trinh,Duc-Hiep Chu,Joxan Jaffarpled with image post-processing has demonstrated robustness in classifying chest X-rays of external datasets, which could be used as a standalone tool for other image analysis projects..The results of the hyper-parameter tuned classification model show a dramatic improvement in overall accuracy of t
17#
發(fā)表于 2025-3-24 14:19:27 | 只看該作者
Chih-Hong Cheng,Yassine Hamza,Harald Ruessn methods improve the resolution of images alike without taking the capture range into account and hence are not quality driven. In order to improve the recognition rate irrespective of the acquisition distance, we propose to make use of transfer learning. The novelty of our approach is that it is t
18#
發(fā)表于 2025-3-24 16:33:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:28 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永善县| 鄱阳县| 古蔺县| 上虞市| 和平县| 腾冲县| 麻城市| 轮台县| 马关县| 东阿县| 静安区| 榆中县| 宁津县| 谢通门县| 会理县| 房山区| 郓城县| 剑河县| 德令哈市| 固始县| 江口县| 什邡市| 道孚县| 定边县| 桃园县| 扎赉特旗| 临江市| 滦南县| 灵寿县| 道真| 尉犁县| 彭州市| 获嘉县| 古田县| 丽水市| 麟游县| 绥芬河市| 德州市| 长丰县| 泰和县| 龙泉市|