找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization; Proceedings of the 1 Alfredo Vellido,Kar

[復(fù)制鏈接]
查看: 32972|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:29:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
期刊簡(jiǎn)稱Proceedings of the 1
影響因子2023Alfredo Vellido,Karina Gibert,José David Martín Gu
視頻videohttp://file.papertrans.cn/150/149652/149652.mp4
發(fā)行地址Covers the latest theoretical developments in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization.Presents computational aspects and applications for data mining and
學(xué)科分類Advances in Intelligent Systems and Computing
圖書封面Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization; Proceedings of the 1 Alfredo Vellido,Kar
影響因子.This book gathers papers presented at the 13th International Workshop on Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization (WSOM+), which was held in Barcelona, Spain, from the 26th to the 28th of June 2019. Since being founded in 1997, the conference has showcased the state of the art in unsupervised machine learning methods related to the successful and widely used self-organizing map (SOM) method, and extending its scope to clustering and data visualization. In this installment of the AISC series, the reader will find theoretical research on SOM, LVQ and related methods, as well as numerous applications to problems in fields ranging from business and engineering to the life sciences. Given the scope of its coverage, the book will be of interest to machine learning researchers and practitioners in general and, more specifically, to those looking for the latest developments in unsupervised learning and data visualization..
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization影響因子(影響力)




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization影響因子(影響力)學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization網(wǎng)絡(luò)公開度




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization被引頻次




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization被引頻次學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization年度引用




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization年度引用學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization讀者反饋




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:54:56 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:52 | 只看該作者
5#
發(fā)表于 2025-3-22 11:57:20 | 只看該作者
When Clustering the Multiscalar Fingerprint of the City Reveals Its Segregation Patterns specific measures for assessing features contributions to clusters, to explore this complex object and to single out . of segregation. We illustrate how clustering allows to see where, how and to which extent segregation occurs.
6#
發(fā)表于 2025-3-22 13:17:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:06:44 | 只看該作者
8#
發(fā)表于 2025-3-22 23:03:01 | 只看該作者
9#
發(fā)表于 2025-3-23 01:43:44 | 只看該作者
2194-5357 computational aspects and applications for data mining and .This book gathers papers presented at the 13th International Workshop on Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization (WSOM+), which was held in Barcelona, Spain, from the 26th to the 28th of June 2
10#
發(fā)表于 2025-3-23 09:20:03 | 只看該作者
Yi Xiong,Xiaolei Zhu,Hao Dai,Dong-Qing Weie thus local and distributed. In this paper we present performance results showing than CSOM can obtain faster and better quantisation than classical SOM when used on high-dimensional vectors. We also present an application on video compression based on vector quantisation, in which CSOM outperforms SOM.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井陉县| 临泉县| 松桃| 宝清县| 聂拉木县| 东台市| 新野县| 乐清市| 延长县| 如皋市| 元谋县| 昂仁县| 遂宁市| 昭觉县| 宁强县| 泸西县| 姚安县| 怀化市| 彰武县| 博乐市| 九寨沟县| 沂南县| 江源县| 永吉县| 甘泉县| 金华市| 马龙县| 大冶市| 和田县| 田东县| 左权县| 龙州县| 日喀则市| 吕梁市| 云浮市| 怀安县| 平潭县| 黔江区| 河南省| 从化市| 纳雍县|