找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization; Dedicated to the Mem Jan Faigl,Madalina

[復(fù)制鏈接]
查看: 46860|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:39:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
期刊簡稱Dedicated to the Mem
影響因子2023Jan Faigl,Madalina Olteanu,Jan Drchal
視頻videohttp://file.papertrans.cn/150/149651/149651.mp4
發(fā)行地址Provides recent research in self-organizing maps, learning vector quantization, clustering, and data visualization.Presents computational aspects and applications for data mining and visualization.Con
學(xué)科分類Lecture Notes in Networks and Systems
圖書封面Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization; Dedicated to the Mem Jan Faigl,Madalina
影響因子.In this collection, the reader can ?nd recent advancements in self-organizing maps (SOMs) and learning vector quantization (LVQ), including progressive ideas on exploiting features of parallel computing. The collection is balanced in presenting novel theoretical contributions with applied results in traditional ?elds of SOMs, such as visualization problems and data analysis. Besides, the collection further includes less traditional deployments in trajectory clustering and recent results on exploiting quantum computation. The presented book is worth interest to data analysis and machine learning researchers and practitioners, speci?cally those interested in being updated with current developments in unsupervised learning, data visualization, and self-organization..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization影響因子(影響力)




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization影響因子(影響力)學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization網(wǎng)絡(luò)公開度




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization被引頻次




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization被引頻次學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization年度引用




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization年度引用學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization讀者反饋




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:27:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:27 | 只看該作者
地板
發(fā)表于 2025-3-22 05:24:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:34:14 | 只看該作者
https://doi.org/10.1007/978-1-4419-1123-0of empirical inference: the hierarchical agglomerative clustering and the computation of minimum enclosing balls. It produces .-nets whose cardinalities are smaller than those obtained with state-of-the-art methods.
6#
發(fā)表于 2025-3-22 13:34:38 | 只看該作者
7#
發(fā)表于 2025-3-22 20:38:26 | 只看該作者
Modification of the Classification-by-Component Predictor Using Dempster-Shafer-Theory,Dempster-Shafer-theory, which in the original approach was mentioned to be implicitly realized but not explained deeply. Thus, we redefine the CbC keeping the main aspects of positive and negative reasoning about detected components/features and relate this to the Demspster-Shafer-theory of evidence.
8#
發(fā)表于 2025-3-22 22:55:19 | 只看該作者
,Inferring ,-nets of?Finite Sets in?a?RKHS,of empirical inference: the hierarchical agglomerative clustering and the computation of minimum enclosing balls. It produces .-nets whose cardinalities are smaller than those obtained with state-of-the-art methods.
9#
發(fā)表于 2025-3-23 03:32:06 | 只看該作者
,Steps Forward to?Quantum Learning Vector Quantization for?Classification Learning on?a?Theoretical t quantum computing patterns and quantum hardware. For this purpose, we introduce a new computing pattern for prototype updates and possible measurement strategies in the quantum computing regime. Further, we consider numerical errors which are induced by the theoretical model and their impact on the learning process.
10#
發(fā)表于 2025-3-23 08:23:41 | 只看該作者
Jan Faigl,Madalina Olteanu,Jan DrchalProvides recent research in self-organizing maps, learning vector quantization, clustering, and data visualization.Presents computational aspects and applications for data mining and visualization.Con
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马龙县| 营口市| 长乐市| 营山县| 灵山县| 海原县| 乐安县| 松滋市| 洪湖市| 长岛县| 安庆市| 三门县| 辽源市| 淄博市| 泗洪县| 东光县| 大厂| 德钦县| 北流市| 葫芦岛市| 托克托县| 平定县| 塘沽区| 华蓥市| 双鸭山市| 永仁县| 南平市| 波密县| 蚌埠市| 康定县| 西丰县| 汶川县| 阿图什市| 临高县| 台中市| 仙居县| 嘉兴市| 呼伦贝尔市| 镇平县| 洪江市| 岳池县|