找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps and Learning Vector Quantization; Proceedings of the 1 Thomas Villmann,Frank-Michael Schleif,Mandy Lange C

[復(fù)制鏈接]
樓主: 水平
41#
發(fā)表于 2025-3-28 14:41:37 | 只看該作者
Stuart A. Macgregor,Odile Eisensteinr, those based on divergences such as stochastic neighbour embedding (SNE). The big advantage of SNE and its variants is that the neighbor preservation is done by optimizing the similarities in both high- and low-dimensional space. This work presents a brief review of SNE-based methods. Also, a comp
42#
發(fā)表于 2025-3-28 19:28:21 | 只看該作者
43#
發(fā)表于 2025-3-29 01:35:42 | 只看該作者
44#
發(fā)表于 2025-3-29 03:25:47 | 只看該作者
https://doi.org/10.1007/978-3-642-18012-5ectorial class labelings for the training data and the prototypes. It employs t-norms, known from fuzzy learning and fuzzy set theory, in the class label assignments, leading to a more flexible model with respect to domain requirements. We present experiments to demonstrate the extended algorithm in
45#
發(fā)表于 2025-3-29 09:35:34 | 只看該作者
46#
發(fā)表于 2025-3-29 11:29:52 | 只看該作者
Mathew Schwartz,Michael Ehrlicharticularly intuitive framework, in which to discuss the basic ideas of distance based classification. A key issue is that of chosing an appropriate distance or similarity measure for the task at hand. Different classes of distance measures, which can be incorporated into the LVQ framework, are intr
47#
發(fā)表于 2025-3-29 19:05:25 | 只看該作者
User Defined Conceptual Modeling Gestures,tion ability with an intuitive learning paradigm: models are represented by few characteristic prototypes, the latter often being located at class typical positions in the data space. In this article we investigate inhowfar these expectations are actually met by modern LVQ schemes such as robust sof
48#
發(fā)表于 2025-3-29 21:50:11 | 只看該作者
49#
發(fā)表于 2025-3-30 03:35:08 | 只看該作者
Erdogan Kiran,Ke Liu,Zeynep Bayraktara correction model which is more accurate than the usual one, since we apply different linear models in each cluster of context. We do not assume any particular probability distribution of the data and the detection method is based on the distance of new data to the Kohonen map learned with correcte
50#
發(fā)表于 2025-3-30 07:40:52 | 只看該作者
https://doi.org/10.1007/978-1-4615-4371-8s, a Self-Organizing Map (SOM) will be computed using a set of features where each feature is weighted by a relevance factor (RFSOM). These factors are computed using the generalized matrix learning vector quantization (GMLVQ) and allow to scale the input dimensions according to their relevance. Wit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海晏县| 洮南市| 安康市| 广河县| 松桃| 常德市| 大洼县| 吴忠市| 陵川县| 武汉市| 屏南县| 湖州市| 赞皇县| 长武县| 吴川市| 玉山县| 邵武市| 泸西县| 左贡县| 威海市| 皮山县| 阜新市| 奇台县| 洪江市| 井冈山市| 桂阳县| 漠河县| 邯郸县| 嘉义市| 巫山县| 衡阳市| 平利县| 临清市| 赫章县| 襄汾县| 桐柏县| 育儿| 泗洪县| 玛纳斯县| 龙泉市| 平乡县|