找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps and Learning Vector Quantization; Proceedings of the 1 Thomas Villmann,Frank-Michael Schleif,Mandy Lange C

[復(fù)制鏈接]
樓主: 水平
31#
發(fā)表于 2025-3-26 22:52:01 | 只看該作者
RFSOM – Extending Self-Organizing Feature Maps with Adaptive Metrics to Combine Spatial and Textural of the SOM in the 2.5D point cloud, a more stable behavior of the single neurons in their specific body region, and hence, to a more reliable pose model for further computation. The algorithm was evaluated on different data sets and compared to a Self-Organizing Map trained with the spatial dimensions only using the same data sets.
32#
發(fā)表于 2025-3-27 02:37:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:17:03 | 只看該作者
34#
發(fā)表于 2025-3-27 12:03:27 | 只看該作者
Conference proceedings 2014ited talks.?Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis and time series analysis. Other chapters present the latest the
35#
發(fā)表于 2025-3-27 14:38:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:14:59 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:10 | 只看該作者
https://doi.org/10.1007/978-3-319-02964-1namical system overcomes limitations of the original Self-Organizing Map (SOM) model of Kohonen. Both competition and learning are driven by dynamical systems and performed continuously in time. The equations governing competition are shown to be able to reconsider dynamically their decision through
38#
發(fā)表于 2025-3-28 04:51:58 | 只看該作者
https://doi.org/10.1007/978-3-319-02964-1s a second level of organization of neurons. MS-SOM units tend to focus the learning process in data space zones with high values of a user-defined magnitude function. The model is based in two mechanisms: a secondary local competition step taking into account the magnitude of each unit, and the use
39#
發(fā)表于 2025-3-28 07:11:35 | 只看該作者
Somasundaram Valliappan,Calvin Chee an (implicit) Euclidean space. However, when using such approaches with prototype-based methods, the computational time is related to the number of observations (because the prototypes are expressed as convex combinations of the original data). Also, a side effect of the method is that the interpre
40#
發(fā)表于 2025-3-28 11:39:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪雅县| 遵义县| 合川市| 津南区| 田林县| 河曲县| 姜堰市| 微山县| 桑植县| 当涂县| 宜良县| 上栗县| 芷江| 湖南省| 梅州市| 西昌市| 高唐县| 杭州市| 钟祥市| 宝坻区| 苏州市| 衡山县| 温宿县| 常熟市| 涟水县| 桦南县| 禹州市| 宜君县| 鹤岗市| 东阿县| 镇平县| 黄大仙区| 望奎县| 福贡县| 新建县| 东兰县| 梅河口市| 灵石县| 镇宁| 盐池县| 莱芜市|