找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps; 7th International Wo José C. Príncipe,Risto Miikkulainen Conference proceedings 2009 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: Hallucination
41#
發(fā)表于 2025-3-28 15:18:47 | 只看該作者
Fault Prediction in Aircraft Engines Using Self-Organizing Maps,s. The goal is to ensure a proper operation of the engines, in all conditions, with a zero probability of failure, while taking into account aging. The fact that the same engine is sometimes used on several aircrafts has to be taken into account too..The maintenance can be improved if an efficient p
42#
發(fā)表于 2025-3-28 20:02:34 | 只看該作者
Incremental Figure-Ground Segmentation Using Localized Adaptive Metrics in LVQ,ss. In this paper we present an incremental learning scheme in the context of figure-ground segmentation. In presence of local adaptive metrics and supervised noisy information we use a parallel evaluation scheme combined with a local utility function to organize a learning vector quantization (LVQ)
43#
發(fā)表于 2025-3-29 00:33:03 | 只看該作者
Application of Supervised Pareto Learning Self Organizing Maps and Its Incremental Learning,tors and applied SP-SOM to the biometric authentication system which uses multiple behavior characteristics as feature vectors. In this paper, we examine performance of SP-SOM for the generic classification problem using iris data set. Furthermore, we propose the incremental learning algorithm for S
44#
發(fā)表于 2025-3-29 05:47:19 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:37 | 只看該作者
46#
發(fā)表于 2025-3-29 14:01:25 | 只看該作者
47#
發(fā)表于 2025-3-29 17:39:55 | 只看該作者
Cartograms, Self-Organizing Maps, and Magnification Control,rts with a brief explanation of what a cartogram is, how it can be used, and what sort of metrics can be used to assess its quality. The methodology for creating a cartogram with a SOM is then presented together with an explanation of how the magnification effect can be compensated in this case by p
48#
發(fā)表于 2025-3-29 22:14:54 | 只看該作者
ViSOM for Dimensionality Reduction in Face Recognition,OM) and growing ViSOM (gViSOM) are two recently proposed variants for a more faithful, metric-based and direct data representation. They learn local quantitative distances of data by regularizing the inter-neuron contraction force while capturing the topology and minimizing the quantization error. I
49#
發(fā)表于 2025-3-30 00:57:21 | 只看該作者
50#
發(fā)表于 2025-3-30 07:09:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
义马市| 始兴县| 临澧县| 紫金县| 尉犁县| 都匀市| 瑞丽市| 内黄县| 门源| 丽江市| 永福县| 张掖市| 阜新| 农安县| 原阳县| 吴川市| 奈曼旗| 五华县| 吉水县| 水城县| 大英县| 涞水县| 文安县| 嘉黎县| 方城县| 会昌县| 徐水县| 陵水| 武乡县| 长宁区| 乌拉特中旗| 乌拉特中旗| 正镶白旗| 海淀区| 浮梁县| 宜城市| 盐亭县| 南皮县| 南昌市| 乐清市| 宁武县|